Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides - PubMed (original) (raw)
Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides
J J Hens et al. J Neurochem. 1998 Nov.
Free article
Abstract
Neurotransmission requires rapid docking, fusion, and recycling of neurotransmitter vesicles. Several of the proteins involved in this complex Ca2+-regulated mechanism have been identified as substrates for protein kinases and phosphatases, e.g., the synapsins, synaptotagmin, rabphilin3A, synaptobrevin, munc18, MARCKS, dynamin I, and B-50/GAP-43. So far most attention has focused on the role of kinases in the release processes, but recent evidence indicates that phosphatases may be as important. Therefore, we investigated the role of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in exocytosis and subsequent vesicle recycling. Calcineurin-neutralizing antibodies, which blocked dynamin I dephosphorylation by endogenous synaptosomal calcineurin activity, but had no effect on the activity of protein phosphatases 1 or 2A, were introduced into rat permeabilized nerve terminals and inhibited Ca2+-induced release of [3H]noradrenaline and neuropeptide cholecystokinin-8 in a specific and concentration-dependent manner. Our data show that the Ca2+/calmodulin-dependent phosphatase calcineurin plays an essential role in exocytosis and/or vesicle recycling of noradrenaline and cholecystokinin-8, transmitters stored in large dense-cored vesicles.
Similar articles
- Evidence for a role of calmodulin in calcium-induced noradrenaline release from permeated synaptosomes: effects of calmodulin antibodies and antagonists.
Hens JJ, Oestreicher AB, De Wit M, Marquart A, Gispen WH, De Graan PN. Hens JJ, et al. J Neurochem. 1996 May;66(5):1933-42. doi: 10.1046/j.1471-4159.1996.66051933.x. J Neurochem. 1996. PMID: 8780020 - Ba2+ replaces Ca2+/calmodulin in the activation of protein phosphatases and in exocytosis of all major transmitters.
Verhage M, Hens JJ, De Grann PN, Boomsma F, Wiegant VM, da Silva FH, Gispen WH, Ghijsen WE. Verhage M, et al. Eur J Pharmacol. 1995 Nov 30;291(3):387-98. doi: 10.1016/0922-4106(95)90081-0. Eur J Pharmacol. 1995. PMID: 8719425 - Evidence for a role of protein kinase C substrate B-50 (GAP-43) in Ca(2+)-induced neuropeptide cholecystokinin-8 release from permeated synaptosomes.
Hens JJ, Ghijsen WE, Dimjati W, Wiegant VM, Oestreicher AB, Gispen WH, De Graan PN. Hens JJ, et al. J Neurochem. 1993 Aug;61(2):602-9. doi: 10.1111/j.1471-4159.1993.tb02164.x. J Neurochem. 1993. PMID: 8336144 - TRP Channel Trafficking.
Planells-Cases R, Ferrer-Montiel A. Planells-Cases R, et al. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 23. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 23. PMID: 21204515 Free Books & Documents. Review. - Potential role of calcineurin for brain ischemia and traumatic injury.
Morioka M, Hamada J, Ushio Y, Miyamoto E. Morioka M, et al. Prog Neurobiol. 1999 May;58(1):1-30. doi: 10.1016/s0301-0082(98)00073-2. Prog Neurobiol. 1999. PMID: 10321795 Review.
Cited by
- The role of serine/threonine protein phosphatases in exocytosis.
Sim AT, Baldwin ML, Rostas JA, Holst J, Ludowyke RI. Sim AT, et al. Biochem J. 2003 Aug 1;373(Pt 3):641-59. doi: 10.1042/BJ20030484. Biochem J. 2003. PMID: 12749763 Free PMC article. Review. - GABAB receptor activation inhibits exocytosis in rat pancreatic beta-cells by G-protein-dependent activation of calcineurin.
Braun M, Wendt A, Buschard K, Salehi A, Sewing S, Gromada J, Rorsman P. Braun M, et al. J Physiol. 2004 Sep 1;559(Pt 2):397-409. doi: 10.1113/jphysiol.2004.066563. Epub 2004 Jul 2. J Physiol. 2004. PMID: 15235087 Free PMC article. - Hemorphins act as homeostatic agents in response to endotoxin-induced stress.
Barkhudaryan N, Zakaryan H, Sarukhanyan F, Gabrielyan A, Dosch D, Kellermann J, Lottspeich F. Barkhudaryan N, et al. Neurochem Res. 2010 Jun;35(6):925-33. doi: 10.1007/s11064-009-0097-3. Epub 2009 Dec 5. Neurochem Res. 2010. PMID: 19967445 - Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases.
Lee JU, Kim LK, Choi JM. Lee JU, et al. Front Immunol. 2018 Nov 27;9:2747. doi: 10.3389/fimmu.2018.02747. eCollection 2018. Front Immunol. 2018. PMID: 30538703 Free PMC article. Review. - Dysregulation in erythrocyte dynamics caused by SARS-CoV-2 infection: possible role in shuffling the homeostatic puzzle during COVID-19.
Mendonça MM, da Cruz KR, Pinheiro DDS, Moraes GCA, Ferreira PM, Ferreira-Neto ML, da Silva ES, Gonçalves RV, Pedrino GR, Fajemiroye JO, Xavier CH. Mendonça MM, et al. Hematol Transfus Cell Ther. 2022 Apr-Jun;44(2):235-245. doi: 10.1016/j.htct.2022.01.005. Epub 2022 Jan 25. Hematol Transfus Cell Ther. 2022. PMID: 35098037 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous