Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex - PubMed (original) (raw)
Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex
L Katz et al. EMBO J. 1998.
Abstract
In a screen for suppressors of a temperature-sensitive mutation in the yeast SNAP-25 homolog, Sec9, we have identified a gain-of-function mutation in the yeast synaptobrevin homolog, Snc2. The genetic properties of this suppression point to a specific interaction between the C-termini of Sec9 and Snc2 within the SNARE complex. Biochemical analysis of interactions between the wild-type and mutant proteins confirms this prediction, demonstrating specific effects of these mutations on interactions between the SNAREs. The location of the mutations suggests that the C-terminal H2 helical domain of Sec9 is likely to be aligned in parallel with Snc2 in the SNARE complex. To test this prediction, we examined the structure of the yeast exocytic SNARE complex by deep-etch electron microscopy. Like the neuronal SNARE complex, it is a rod approximately 14 nm long. Using epitope tags, antibodies and maltose-binding protein markers, we find that the helical domains of Sso, Snc and both halves of Sec9 are all aligned in parallel within the SNARE complex, suggesting that the yeast exocytic SNARE complex consists of a parallel four helix bundle. Finally, we find a similar arrangement for SNAP-25 in the neuronal SNARE complex. This provides strong evidence that the exocytic SNARE complex is a highly conserved structure composed of four parallel helical domains whose C-termini must converge in order to bring about membrane fusion.
Similar articles
- Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9.
Rossi G, Salminen A, Rice LM, Brünger AT, Brennwald P. Rossi G, et al. J Biol Chem. 1997 Jun 27;272(26):16610-7. doi: 10.1074/jbc.272.26.16610. J Biol Chem. 1997. PMID: 9195974 - Formation of a yeast SNARE complex is accompanied by significant structural changes.
Rice LM, Brennwald P, Brünger AT. Rice LM, et al. FEBS Lett. 1997 Sep 22;415(1):49-55. doi: 10.1016/s0014-5793(97)01091-0. FEBS Lett. 1997. PMID: 9326367 - Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis.
Brennwald P, Kearns B, Champion K, Keränen S, Bankaitis V, Novick P. Brennwald P, et al. Cell. 1994 Oct 21;79(2):245-58. doi: 10.1016/0092-8674(94)90194-5. Cell. 1994. PMID: 7954793 - Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins.
Dietrich LE, Boeddinghaus C, LaGrassa TJ, Ungermann C. Dietrich LE, et al. Biochim Biophys Acta. 2003 Aug 18;1641(2-3):111-9. doi: 10.1016/s0167-4889(03)00094-6. Biochim Biophys Acta. 2003. PMID: 12914952 Review. - Electrostatic attraction at the core of membrane fusion.
Montal M. Montal M. FEBS Lett. 1999 Mar 26;447(2-3):129-30. doi: 10.1016/s0014-5793(99)90269-7. FEBS Lett. 1999. PMID: 10214931 Review.
Cited by
- Constitutive versus regulated SNARE assembly: a structural basis.
Chen Y, Xu Y, Zhang F, Shin YK. Chen Y, et al. EMBO J. 2004 Feb 25;23(4):681-9. doi: 10.1038/sj.emboj.7600083. Epub 2004 Feb 5. EMBO J. 2004. PMID: 14765122 Free PMC article. - SNAREpins are functionally resistant to disruption by NSF and alphaSNAP.
Weber T, Parlati F, McNew JA, Johnston RJ, Westermann B, Söllner TH, Rothman JE. Weber T, et al. J Cell Biol. 2000 May 29;149(5):1063-72. doi: 10.1083/jcb.149.5.1063. J Cell Biol. 2000. PMID: 10831610 Free PMC article. - A palisade-shaped membrane reservoir is required for rapid ring cell inflation in Drechslerella dactyloides.
Chen Y, Liu J, Kang S, Wei D, Fan Y, Xiang M, Liu X. Chen Y, et al. Nat Commun. 2023 Nov 15;14(1):7376. doi: 10.1038/s41467-023-43235-w. Nat Commun. 2023. PMID: 37968349 Free PMC article. - Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud.
Adamo JE, Moskow JJ, Gladfelter AS, Viterbo D, Lew DJ, Brennwald PJ. Adamo JE, et al. J Cell Biol. 2001 Nov 12;155(4):581-92. doi: 10.1083/jcb.200106065. Epub 2001 Nov 12. J Cell Biol. 2001. PMID: 11706050 Free PMC article. - Regulation of intestinal lipid metabolism: current concepts and relevance to disease.
Ko CW, Qu J, Black DD, Tso P. Ko CW, et al. Nat Rev Gastroenterol Hepatol. 2020 Mar;17(3):169-183. doi: 10.1038/s41575-019-0250-7. Epub 2020 Feb 3. Nat Rev Gastroenterol Hepatol. 2020. PMID: 32015520 Review.
References
- J Mol Biol. 1983 Sep 5;169(1):155-95 - PubMed
- Biochem Biophys Res Commun. 1995 Jul 26;212(3):945-52 - PubMed
- Methods Enzymol. 1987;154:367-82 - PubMed
- J Biol Chem. 1996 Jul 26;271(30):17961-5 - PubMed
- J Biol Chem. 1997 Feb 14;272(7):4582-90 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases