RuvAB acts at arrested replication forks - PubMed (original) (raw)
RuvAB acts at arrested replication forks
M Seigneur et al. Cell. 1998.
Free article
Abstract
Replication arrest leads to the occurrence of DNA double-stranded breaks (DSB). We studied the mechanism of DSB formation by direct measure of the amount of in vivo linear DNA in Escherichia coli cells that lack the RecBCD recombination complex and by genetic means. The RuvABC proteins, which catalyze migration and cleavage of Holliday junctions, are responsible for the occurrence of DSBs at arrested replication forks. In cells proficient for RecBC, RuvAB is uncoupled from RuvC and DSBs may be prevented. This may be explained if a Holliday junction forms upon replication fork arrest, by annealing of the two nascent strands. RecBCD may act on the double-stranded tail prior to the cleavage of the RuvAB-bound junction by RuvC to rescue the blocked replication fork without breakage.
Similar articles
- RuvABC-dependent double-strand breaks in dnaBts mutants require recA.
Seigneur M, Ehrlich SD, Michel B. Seigneur M, et al. Mol Microbiol. 2000 Nov;38(3):565-74. doi: 10.1046/j.1365-2958.2000.02152.x. Mol Microbiol. 2000. PMID: 11069680 - sbcB sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants.
Bidnenko V, Seigneur M, Penel-Colin M, Bouton MF, Dusko Ehrlich S, Michel B. Bidnenko V, et al. Mol Microbiol. 1999 Aug;33(4):846-57. doi: 10.1046/j.1365-2958.1999.01532.x. Mol Microbiol. 1999. PMID: 10447893 - DNA double-strand breaks caused by replication arrest.
Michel B, Ehrlich SD, Uzest M. Michel B, et al. EMBO J. 1997 Jan 15;16(2):430-8. doi: 10.1093/emboj/16.2.430. EMBO J. 1997. PMID: 9029161 Free PMC article. - Recombination proteins and rescue of arrested replication forks.
Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R. Michel B, et al. DNA Repair (Amst). 2007 Jul 1;6(7):967-80. doi: 10.1016/j.dnarep.2007.02.016. Epub 2007 Mar 28. DNA Repair (Amst). 2007. PMID: 17395553 Review. - Replication Fork Breakage and Restart in Escherichia coli.
Michel B, Sinha AK, Leach DRF. Michel B, et al. Microbiol Mol Biol Rev. 2018 Jun 13;82(3):e00013-18. doi: 10.1128/MMBR.00013-18. Print 2018 Sep. Microbiol Mol Biol Rev. 2018. PMID: 29898897 Free PMC article. Review.
Cited by
- RNase HI Is Essential for Survival of Mycobacterium smegmatis.
Minias AE, Brzostek AM, Korycka-Machala M, Dziadek B, Minias P, Rajagopalan M, Madiraju M, Dziadek J. Minias AE, et al. PLoS One. 2015 May 12;10(5):e0126260. doi: 10.1371/journal.pone.0126260. eCollection 2015. PLoS One. 2015. PMID: 25965344 Free PMC article. - Circles: the replication-recombination-chromosome segregation connection.
Barre FX, Søballe B, Michel B, Aroyo M, Robertson M, Sherratt D. Barre FX, et al. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8189-95. doi: 10.1073/pnas.111008998. Proc Natl Acad Sci U S A. 2001. PMID: 11459952 Free PMC article. Review. - New views of the bacterial chromosome.
Lovett ST, Segall AM. Lovett ST, et al. EMBO Rep. 2004 Sep;5(9):860-4. doi: 10.1038/sj.embor.7400232. EMBO Rep. 2004. PMID: 15319779 Free PMC article. - A requirement for recombinational repair in Saccharomyces cerevisiae is caused by DNA replication defects of mec1 mutants.
Merrill BJ, Holm C. Merrill BJ, et al. Genetics. 1999 Oct;153(2):595-605. doi: 10.1093/genetics/153.2.595. Genetics. 1999. PMID: 10511542 Free PMC article. - Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis.
Wang JD, Berkmen MB, Grossman AD. Wang JD, et al. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5608-13. doi: 10.1073/pnas.0608999104. Epub 2007 Mar 19. Proc Natl Acad Sci U S A. 2007. PMID: 17372224 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases