Inhibition of human caspases by peptide-based and macromolecular inhibitors - PubMed (original) (raw)
Inhibition of human caspases by peptide-based and macromolecular inhibitors
M Garcia-Calvo et al. J Biol Chem. 1998.
Abstract
Studies with peptide-based and macromolecular inhibitors of the caspase family of cysteine proteases have helped to define a central role for these enzymes in inflammation and mammalian apoptosis. A clear interpretation of these studies has been compromised by an incomplete understanding of the selectivity of these molecules. Here we describe the selectivity of several peptide-based inhibitors and the coxpox serpin CrmA against 10 human caspases. The peptide aldehydes that were examined (Ac-WEHD-CHO, Ac-DEVD-CHO, Ac-YVAD-CHO, t-butoxycarbonyl-IETD-CHO, and t-butoxycarbonyl-AEVD-CHO) included several that contain the optimal tetrapeptide recognition motif for various caspases. These aldehydes display a wide range of selectivities and potencies against these enzymes, with dissociation constants ranging from 75 pM to >10 microM. The halomethyl ketone benzyloxycarbonyl-VAD fluoromethyl ketone is a broad specificity irreversible caspase inhibitor, with second-order inactivation rates that range from 2.9 x 10(2) M-1 s-1 for caspase-2 to 2.8 x 10(5) M-1 s-1 for caspase-1. The results obtained with peptide-based inhibitors are in accord with those predicted from the substrate specificity studies described earlier. The cowpox serpin CrmA is a potent (Ki < 20 nM) and selective inhibitor of Group I caspases (caspase-1, -4, and -5) and most Group III caspases (caspase-8, -9, and -10), suggesting that this virus facilitates infection through inhibition of both apoptosis and the host inflammatory response.
Similar articles
- Need for caspases in apoptosis of trophic factor-deprived PC12 cells.
Haviv R, Lindenboim L, Li H, Yuan J, Stein R. Haviv R, et al. J Neurosci Res. 1997 Oct 1;50(1):69-80. doi: 10.1002/(SICI)1097-4547(19971001)50:1<69::AID-JNR8>3.0.CO;2-J. J Neurosci Res. 1997. PMID: 9379495 - Non-specific effects of methyl ketone peptide inhibitors of caspases.
Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R. Schotte P, et al. FEBS Lett. 1999 Jan 8;442(1):117-21. doi: 10.1016/s0014-5793(98)01640-8. FEBS Lett. 1999. PMID: 9923616 - Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity.
Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Stefe I, Vandenabeele P, Brömme D, Puizdar V, Fonović M, Trstenjak-Prebanda M, Dolenc I, Turk V, Turk B. Rozman-Pungercar J, et al. Cell Death Differ. 2003 Aug;10(8):881-8. doi: 10.1038/sj.cdd.4401247. Cell Death Differ. 2003. PMID: 12867995 - Crystal structure of the apoptotic suppressor CrmA in its cleaved form.
Renatus M, Zhou Q, Stennicke HR, Snipas SJ, Turk D, Bankston LA, Liddington RC, Salvesen GS. Renatus M, et al. Structure. 2000 Jul 15;8(7):789-97. doi: 10.1016/s0969-2126(00)00165-9. Structure. 2000. PMID: 10903953 - Endogenous inhibitors of caspases.
Deveraux QL, Stennicke HR, Salvesen GS, Reed JC. Deveraux QL, et al. J Clin Immunol. 1999 Nov;19(6):388-98. doi: 10.1023/a:1020502800208. J Clin Immunol. 1999. PMID: 10634212 Review.
Cited by
- Extracellular Vesicle Inhibitors Enhance Cholix-Induced Cell Death via Regulation of the JNK-Dependent Pathway.
Ozaki K, Nagahara H, Kawamura A, Ohgita T, Higashi S, Ogura K, Tsutsuki H, Iyoda S, Yokotani A, Yamaji T, Moss J, Yahiro K. Ozaki K, et al. Toxins (Basel). 2024 Aug 29;16(9):380. doi: 10.3390/toxins16090380. Toxins (Basel). 2024. PMID: 39330838 Free PMC article. - PPM1D activity promotes cellular transformation by preventing senescence and cell death.
Stoyanov M, Martinikova AS, Matejkova K, Horackova K, Zemankova P, Burdova K, Zemanova Z, Kleiblova P, Kleibl Z, Macurek L. Stoyanov M, et al. Oncogene. 2024 Oct;43(42):3081-3093. doi: 10.1038/s41388-024-03149-3. Epub 2024 Sep 5. Oncogene. 2024. PMID: 39237765 Free PMC article. - Exploration of Hydrazide-Based HDAC8 PROTACs for the Treatment of Hematological Malignancies and Solid Tumors.
Zhao C, Zhang J, Zhou H, Setroikromo R, Poelarends GJ, Dekker FJ. Zhao C, et al. J Med Chem. 2024 Aug 22;67(16):14016-14039. doi: 10.1021/acs.jmedchem.4c00836. Epub 2024 Aug 1. J Med Chem. 2024. PMID: 39089850 Free PMC article. - Vaginal microbes alter epithelial transcriptome and induce epigenomic modifications providing insight into mechanisms for susceptibility to adverse reproductive outcomes.
Elovitz M, Anton L, Cristancho A, Ferguson B, Joseph A, Ravel J. Elovitz M, et al. Res Sq [Preprint]. 2024 May 31:rs.3.rs-4385224. doi: 10.21203/rs.3.rs-4385224/v1. Res Sq. 2024. PMID: 38854063 Free PMC article. Preprint. - The inflammasome pathway is activated by dengue virus non-structural protein 1 and is protective during dengue virus infection.
Wong MP, Juan EYW, Pahmeier F, Chelluri SS, Wang P, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. Wong MP, et al. PLoS Pathog. 2024 Apr 25;20(4):e1012167. doi: 10.1371/journal.ppat.1012167. eCollection 2024 Apr. PLoS Pathog. 2024. PMID: 38662771 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Chemical Information