The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila - PubMed (original) (raw)
The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila
R Stanewsky et al. Cell. 1998.
Free article
Abstract
A new rhythm mutation was isolated based on its elimination of per-controlled luciferase cycling. Levels of period or timeless clock gene products in the mutant are flat in daily light-dark cycles or constant darkness (although PER and TIM oscillate normally in temperature cycles). Consistent with the fact that light normally suppresses TIM, cryb is an apparent null mutation in a gene encoding Drosophila's version of the blue light receptor cryptochrome. Behaviorally, cryb exhibits poor synchronization to light-dark cycles in genetic backgrounds that cause external blindness or demand several hours of daily rhythm resets, and it shows no response to brief light pulses. cryb flies are rhythmic in constant darkness, correlating with robust PER and TIM cycling in certain pacemaker neurons.
Similar articles
- Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
Ivanchenko M, Stanewsky R, Giebultowicz JM. Ivanchenko M, et al. J Biol Rhythms. 2001 Jun;16(3):205-15. doi: 10.1177/074873040101600303. J Biol Rhythms. 2001. PMID: 11407780 - Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila.
Collins BH, Dissel S, Gaten E, Rosato E, Kyriacou CP. Collins BH, et al. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19021-6. doi: 10.1073/pnas.0505392102. Epub 2005 Dec 16. Proc Natl Acad Sci U S A. 2005. PMID: 16361445 Free PMC article. - A fly's eye view of circadian entrainment.
Ashmore LJ, Sehgal A. Ashmore LJ, et al. J Biol Rhythms. 2003 Jun;18(3):206-16. doi: 10.1177/0748730403018003003. J Biol Rhythms. 2003. PMID: 12828278 Review. - Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception.
Sancar A. Sancar A. Annu Rev Biochem. 2000;69:31-67. doi: 10.1146/annurev.biochem.69.1.31. Annu Rev Biochem. 2000. PMID: 10966452 Review.
Cited by
- Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila.
Adewoye AB, Kyriacou CP, Tauber E. Adewoye AB, et al. BMC Genomics. 2015 Aug 1;16(1):570. doi: 10.1186/s12864-015-1787-7. BMC Genomics. 2015. PMID: 26231660 Free PMC article. - SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N. Xing W, et al. Nature. 2013 Apr 4;496(7443):64-8. doi: 10.1038/nature11964. Epub 2013 Mar 17. Nature. 2013. PMID: 23503662 Free PMC article. - The circadian clock, light, and cryptochrome regulate feeding and metabolism in Drosophila.
Seay DJ, Thummel CS. Seay DJ, et al. J Biol Rhythms. 2011 Dec;26(6):497-506. doi: 10.1177/0748730411420080. J Biol Rhythms. 2011. PMID: 22215608 Free PMC article. - Light signaling in plants-a selective history.
Huq E, Lin C, Quail PH. Huq E, et al. Plant Physiol. 2024 Apr 30;195(1):213-231. doi: 10.1093/plphys/kiae110. Plant Physiol. 2024. PMID: 38431282 Free PMC article. Review. - New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless.
Singh S, Giesecke A, Damulewicz M, Fexova S, Mazzotta GM, Stanewsky R, Dolezel D. Singh S, et al. Front Physiol. 2019 Dec 3;10:1442. doi: 10.3389/fphys.2019.01442. eCollection 2019. Front Physiol. 2019. PMID: 31849700 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases