Neurobiological similarities in antidepressant sleep deprivation and psychostimulant use: a psychostimulant theory of antidepressant sleep deprivation - PubMed (original) (raw)
Review
Neurobiological similarities in antidepressant sleep deprivation and psychostimulant use: a psychostimulant theory of antidepressant sleep deprivation
D Ebert et al. Psychopharmacology (Berl). 1998 Nov.
Abstract
This paper attempts to summarize the evidence for the hypothesis that psychostimulant-like neurotransmitter processes within certain regions of the limbic system induce the positive effects of antidepressant sleep deprivation (SD). Preclinical and human studies indicate similar neurobiological effects of psychostimulants such as amphetamines, cocaine and SD. In clinical use, SD and psychostimulants have similar characteristics and behavioral effects. Furthermore, acute psychostimulant challenge decreases limbic metabolism in imaging studies, and SD decreases elevated limbic metabolism in SD responders, indicating that psychostimulant-like neurotransmitter release could decrease limbic metabolism in SD responders. Most antidepressant pharmacotherapies change the reactivity of the dopamine system, and a decrease of presynaptic dopamine or postsynaptic availability can induce depression. Sleep is accompanied by a reduction of catecholamine release and those processes which are increased by psychostimulants. It is concluded that a proposed regional postsynaptic deficit in catecholaminergic neurotransmission can be overcome either acutely by enhanced release during SD or psychostimulant use, or chronically by changes in receptor sensitivity or gene expression due to antidepressant therapies. A postsynaptic deficit in these areas becomes evident if presynaptic release is reduced in conditions such as sleep. Therefore, sleep is depressiogenic for predisposed individuals and the reduction of sleep avoids understimulation of subsensitive postsynaptic processes, which are enhanced by psychostimulants.
Similar articles
- Sleep deprivation in depression.
Hemmeter UM, Hemmeter-Spernal J, Krieg JC. Hemmeter UM, et al. Expert Rev Neurother. 2010 Jul;10(7):1101-15. doi: 10.1586/ern.10.83. Expert Rev Neurother. 2010. PMID: 20586691 Review. - The mesolimbic dopamine system as a target for rapid antidepressant action.
Willner P. Willner P. Int Clin Psychopharmacol. 1997 Jul;12 Suppl 3:S7-14. doi: 10.1097/00004850-199707003-00002. Int Clin Psychopharmacol. 1997. PMID: 9347387 Review. - Antidepressive response to sleep deprivation in unipolar depression is not associated with dopamine D3 receptor genotype.
Schumann G, Benedetti F, Voderholzer U, Kammerer N, Hemmeter U, Travers HW, Fiebich B, Holsboer-Trachsler E, Berger M, Seifritz E, Ebert D. Schumann G, et al. Neuropsychobiology. 2001;43(3):127-30. doi: 10.1159/000054879. Neuropsychobiology. 2001. PMID: 11287789 - Eye-blink rates and depression. Is the antidepressant effect of sleep deprivation mediated by the dopamine system?
Ebert D, Albert R, Hammon G, Strasser B, May A, Merz A. Ebert D, et al. Neuropsychopharmacology. 1996 Oct;15(4):332-9. doi: 10.1016/0893-133X(95)00237-8. Neuropsychopharmacology. 1996. PMID: 8887987 - Antidepressant treatment and limbic serotonergic mechanisms regulating rat locomotor activity.
Plaznik A, Stefanski R, Palejko W, Bidzinski A, Kostowski W, Jessa M, Nazar M. Plaznik A, et al. Pharmacol Biochem Behav. 1994 Jun;48(2):315-25. doi: 10.1016/0091-3057(94)90533-9. Pharmacol Biochem Behav. 1994. PMID: 8090797
Cited by
- Stem Cell Factor (SCF) is a putative biomarker of antidepressant response.
Benedetti F, Poletti S, Hoogenboezem TA, Locatelli C, Ambrée O, de Wit H, Wijkhuijs AJ, Mazza E, Bulgarelli C, Vai B, Colombo C, Smeraldi E, Arolt V, Drexhage HA. Benedetti F, et al. J Neuroimmune Pharmacol. 2016 Jun;11(2):248-58. doi: 10.1007/s11481-016-9672-y. Epub 2016 Apr 23. J Neuroimmune Pharmacol. 2016. PMID: 27108110 - A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: an experimental extension.
Babson KA, Trainor CD, Feldner MT, Blumenthal H. Babson KA, et al. J Behav Ther Exp Psychiatry. 2010 Sep;41(3):297-303. doi: 10.1016/j.jbtep.2010.02.008. Epub 2010 Feb 23. J Behav Ther Exp Psychiatry. 2010. PMID: 20231014 Free PMC article. - An Integrated Sleep and Reward Processing Model of Major Depressive Disorder.
Boland EM, Goldschmied JR, Wakschal E, Nusslock R, Gehrman PR. Boland EM, et al. Behav Ther. 2020 Jul;51(4):572-587. doi: 10.1016/j.beth.2019.12.005. Epub 2020 Jan 13. Behav Ther. 2020. PMID: 32586431 Free PMC article. - Life events in bipolar disorder: towards more specific models.
Johnson SL. Johnson SL. Clin Psychol Rev. 2005 Dec;25(8):1008-27. doi: 10.1016/j.cpr.2005.06.004. Epub 2005 Aug 29. Clin Psychol Rev. 2005. PMID: 16129530 Free PMC article. Review. - Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures.
Fifel K, Meijer JH, Deboer T. Fifel K, et al. Sci Rep. 2018 May 17;8(1):7765. doi: 10.1038/s41598-018-25770-5. Sci Rep. 2018. PMID: 29773830 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical