A molecular mechanism for electrical tuning of cochlear hair cells - PubMed (original) (raw)
A molecular mechanism for electrical tuning of cochlear hair cells
K Ramanathan et al. Science. 1999.
Abstract
Cochlear frequency selectivity in lower vertebrates arises in part from electrical tuning intrinsic to the sensory hair cells. The resonant frequency is determined largely by the gating kinetics of calcium-activated potassium (BK) channels encoded by the slo gene. Alternative splicing of slo from chick cochlea generated kinetically distinct BK channels. Combination with accessory beta subunits slowed the gating kinetics of alpha splice variants but preserved relative differences between them. In situ hybridization showed that the beta subunit is preferentially expressed by low-frequency (apical) hair cells in the avian cochlea. Interaction of beta with alpha splice variants could provide the kinetic range needed for electrical tuning of cochlear hair cells.
Similar articles
- beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells.
Ramanathan K, Michael TH, Fuchs PA. Ramanathan K, et al. J Neurosci. 2000 Mar 1;20(5):1675-84. doi: 10.1523/JNEUROSCI.20-05-01675.2000. J Neurosci. 2000. PMID: 10684869 Free PMC article. - Modeling hair cell tuning by expression gradients of potassium channel beta subunits.
Ramanathan K, Fuchs PA. Ramanathan K, et al. Biophys J. 2002 Jan;82(1 Pt 1):64-75. doi: 10.1016/S0006-3495(02)75374-5. Biophys J. 2002. PMID: 11751296 Free PMC article. - Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
Langer P, Gründer S, Rüsch A. Langer P, et al. J Comp Neurol. 2003 Jan 6;455(2):198-209. doi: 10.1002/cne.10471. J Comp Neurol. 2003. PMID: 12454985 - Mechanisms of hair cell tuning.
Fettiplace R, Fuchs PA. Fettiplace R, et al. Annu Rev Physiol. 1999;61:809-34. doi: 10.1146/annurev.physiol.61.1.809. Annu Rev Physiol. 1999. PMID: 10099711 Review. - A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells.
Wu YC, Art JJ, Goodman MB, Fettiplace R. Wu YC, et al. Prog Biophys Mol Biol. 1995;63(2):131-58. doi: 10.1016/0079-6107(95)00002-5. Prog Biophys Mol Biol. 1995. PMID: 7624477 Review. No abstract available.
Cited by
- Petrosal morphology and cochlear function in Mesozoic stem therians.
Harper T, Rougier GW. Harper T, et al. PLoS One. 2019 Aug 14;14(8):e0209457. doi: 10.1371/journal.pone.0209457. eCollection 2019. PLoS One. 2019. PMID: 31412094 Free PMC article. - ATP inhibition of a mouse brain large-conductance K+ (mslo) channel variant by a mechanism independent of protein phosphorylation.
Clark AG, Hall SK, Shipston MJ. Clark AG, et al. J Physiol. 1999 Apr 1;516 ( Pt 1)(Pt 1):45-53. doi: 10.1111/j.1469-7793.1999.045aa.x. J Physiol. 1999. PMID: 10066921 Free PMC article. - Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells.
Xia XM, Ding JP, Lingle CJ. Xia XM, et al. J Neurosci. 1999 Jul 1;19(13):5255-64. doi: 10.1523/JNEUROSCI.19-13-05255.1999. J Neurosci. 1999. PMID: 10377337 Free PMC article. - Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis.
Fukui I, Ohmori H. Fukui I, et al. J Neurosci. 2004 Aug 25;24(34):7514-23. doi: 10.1523/JNEUROSCI.0566-04.2004. J Neurosci. 2004. PMID: 15329398 Free PMC article. - Ca2+-Activated K+ Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information.
Li X, Abou Tayoun A, Song Z, Dau A, Rien D, Jaciuch D, Dongre S, Blanchard F, Nikolaev A, Zheng L, Bollepalli MK, Chu B, Hardie RC, Dolph PJ, Juusola M. Li X, et al. J Neurosci. 2019 Sep 4;39(36):7132-7154. doi: 10.1523/JNEUROSCI.3213-18.2019. Epub 2019 Jul 26. J Neurosci. 2019. PMID: 31350259 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases