A molecular mechanism for electrical tuning of cochlear hair cells - PubMed (original) (raw)
A molecular mechanism for electrical tuning of cochlear hair cells
K Ramanathan et al. Science. 1999.
Abstract
Cochlear frequency selectivity in lower vertebrates arises in part from electrical tuning intrinsic to the sensory hair cells. The resonant frequency is determined largely by the gating kinetics of calcium-activated potassium (BK) channels encoded by the slo gene. Alternative splicing of slo from chick cochlea generated kinetically distinct BK channels. Combination with accessory beta subunits slowed the gating kinetics of alpha splice variants but preserved relative differences between them. In situ hybridization showed that the beta subunit is preferentially expressed by low-frequency (apical) hair cells in the avian cochlea. Interaction of beta with alpha splice variants could provide the kinetic range needed for electrical tuning of cochlear hair cells.
Similar articles
- beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells.
Ramanathan K, Michael TH, Fuchs PA. Ramanathan K, et al. J Neurosci. 2000 Mar 1;20(5):1675-84. doi: 10.1523/JNEUROSCI.20-05-01675.2000. J Neurosci. 2000. PMID: 10684869 Free PMC article. - Modeling hair cell tuning by expression gradients of potassium channel beta subunits.
Ramanathan K, Fuchs PA. Ramanathan K, et al. Biophys J. 2002 Jan;82(1 Pt 1):64-75. doi: 10.1016/S0006-3495(02)75374-5. Biophys J. 2002. PMID: 11751296 Free PMC article. - Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
Langer P, Gründer S, Rüsch A. Langer P, et al. J Comp Neurol. 2003 Jan 6;455(2):198-209. doi: 10.1002/cne.10471. J Comp Neurol. 2003. PMID: 12454985 - Mechanisms of hair cell tuning.
Fettiplace R, Fuchs PA. Fettiplace R, et al. Annu Rev Physiol. 1999;61:809-34. doi: 10.1146/annurev.physiol.61.1.809. Annu Rev Physiol. 1999. PMID: 10099711 Review. - A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells.
Wu YC, Art JJ, Goodman MB, Fettiplace R. Wu YC, et al. Prog Biophys Mol Biol. 1995;63(2):131-58. doi: 10.1016/0079-6107(95)00002-5. Prog Biophys Mol Biol. 1995. PMID: 7624477 Review. No abstract available.
Cited by
- Hearing conspecific vocal signals alters peripheral auditory sensitivity.
Gall MD, Wilczynski W. Gall MD, et al. Proc Biol Sci. 2015 Jun 7;282(1808):20150749. doi: 10.1098/rspb.2015.0749. Proc Biol Sci. 2015. PMID: 25972471 Free PMC article. - Expression of the Kv3.1 potassium channel in the avian auditory brainstem.
Parameshwaran S, Carr CE, Perney TM. Parameshwaran S, et al. J Neurosci. 2001 Jan 15;21(2):485-94. doi: 10.1523/JNEUROSCI.21-02-00485.2001. J Neurosci. 2001. PMID: 11160428 Free PMC article. - Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ.
McAnelly ML, Zakon HH. McAnelly ML, et al. J Neurosci. 2000 May 1;20(9):3408-14. doi: 10.1523/JNEUROSCI.20-09-03408.2000. J Neurosci. 2000. PMID: 10777803 Free PMC article. - Otoacoustic Emissions in Non-Mammals.
Manley GA. Manley GA. Audiol Res. 2022 May 11;12(3):260-272. doi: 10.3390/audiolres12030027. Audiol Res. 2022. PMID: 35645197 Free PMC article. Review. - Control of alternative pre-mRNA splicing by Ca(++) signals.
Xie J. Xie J. Biochim Biophys Acta. 2008 Aug;1779(8):438-52. doi: 10.1016/j.bbagrm.2008.01.003. Epub 2008 Jan 17. Biochim Biophys Acta. 2008. PMID: 18258215 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources