Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies - PubMed (original) (raw)
Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies
M Ruponen et al. Biochim Biophys Acta. 1999.
Free article
Abstract
Complexes of DNA with cationic lipids and cationic polymers are frequently used for gene transfer. Extracellular interactions of the complexes with anionic glycosaminoglycans (GAGs) may interfere with gene transfer. Interactions of GAGs with the carrier-DNA complexes were studied using tests for DNA relaxation (ethidium bromide intercalation), DNA release (electrophoresis), and transfection (pCMVbetaGal transfer into RAA smooth muscle cells). Several cationic lipid formulations (DOTAP, DOTAP/Chol, DOTAP/DOPE, DOTMA/DOPE, DOGS) and cationic polymers (fractured dendrimer, polyethylene imines 25 kDa and 800 kDa, polylysines 20 kDa and 200 kDa) were tested. Polycations condensed DNA more effectively than the monovalent lipids. Hyaluronic acid did not release or relax DNA in any complex, but it inhibited the transfection by some polyvalent systems (PEI, dendrimers, DOGS). Gene transfer by the other carriers was not affected by hyaluronic acid. Sulfated GAGs (heparan sulfate, chondroitin sulfates B and C) completely blocked transfection, except in the case of the liposomes with DOPE. Sulfated GAGs relaxed and released DNA from some complexes, but these events were not prerequisites for the inhibition of transfection. In conclusion, polyvalent delivery systems with endosomal buffering capacity (DOGS, PEI, dendrimer) were most sensitive to the inhibitory effects of GAGs on gene transfer, while fusogenic liposomes (with DOPE) were the most resistant systems.
Similar articles
- Extracellular and intracellular barriers in non-viral gene delivery.
Ruponen M, Honkakoski P, Rönkkö S, Pelkonen J, Tammi M, Urtti A. Ruponen M, et al. J Control Release. 2003 Dec 5;93(2):213-7. doi: 10.1016/j.jconrel.2003.08.004. J Control Release. 2003. PMID: 14636726 Review. - Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes.
Ruponen M, Rönkkö S, Honkakoski P, Pelkonen J, Tammi M, Urtti A. Ruponen M, et al. J Biol Chem. 2001 Sep 7;276(36):33875-80. doi: 10.1074/jbc.M011553200. Epub 2001 Jun 4. J Biol Chem. 2001. PMID: 11390375 - A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides.
Jääskeläinen I, Peltola S, Honkakoski P, Mönkkönen J, Urtti A. Jääskeläinen I, et al. Eur J Pharm Sci. 2000 May;10(3):187-93. doi: 10.1016/s0928-0987(00)00068-3. Eur J Pharm Sci. 2000. PMID: 10767596 - The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes.
Ramezani M, Khoshhamdam M, Dehshahri A, Malaekeh-Nikouei B. Ramezani M, et al. Colloids Surf B Biointerfaces. 2009 Aug 1;72(1):1-5. doi: 10.1016/j.colsurfb.2009.03.018. Epub 2009 Apr 2. Colloids Surf B Biointerfaces. 2009. PMID: 19395245 - Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems.
Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B. Rezaee M, et al. J Control Release. 2016 Aug 28;236:1-14. doi: 10.1016/j.jconrel.2016.06.023. Epub 2016 Jun 15. J Control Release. 2016. PMID: 27317365 Review.
Cited by
- A review of the tortuous path of nonviral gene delivery and recent progress.
Sharma D, Arora S, Singh J, Layek B. Sharma D, et al. Int J Biol Macromol. 2021 Jul 31;183:2055-2073. doi: 10.1016/j.ijbiomac.2021.05.192. Epub 2021 Jun 1. Int J Biol Macromol. 2021. PMID: 34087309 Free PMC article. Review. - Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes.
Osada K. Osada K. Polymers (Basel). 2020 Jul 19;12(7):1603. doi: 10.3390/polym12071603. Polymers (Basel). 2020. PMID: 32707655 Free PMC article. Review. - Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis.
Munsell EV, Fang B, Sullivan MO. Munsell EV, et al. Bioconjug Chem. 2018 Nov 21;29(11):3691-3704. doi: 10.1021/acs.bioconjchem.8b00611. Epub 2018 Oct 29. Bioconjug Chem. 2018. PMID: 30350573 Free PMC article. - The Impact of Nylon-3 Copolymer Composition on the Efficiency of siRNA Delivery to Glioblastoma Cells.
Hartl N, Adams F, Costabile G, Isert L, Döblinger M, Xiao X, Liu R, Merkel OM. Hartl N, et al. Nanomaterials (Basel). 2019 Jul 8;9(7):986. doi: 10.3390/nano9070986. Nanomaterials (Basel). 2019. PMID: 31288448 Free PMC article. - Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity.
Sarker SR, Aoshima Y, Hokama R, Inoue T, Sou K, Takeoka S. Sarker SR, et al. Int J Nanomedicine. 2013;8:1361-75. doi: 10.2147/IJN.S38903. Epub 2013 Apr 10. Int J Nanomedicine. 2013. PMID: 23630419 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical