The stability of proteins in extreme environments - PubMed (original) (raw)
Review
The stability of proteins in extreme environments
R Jaenicke et al. Curr Opin Struct Biol. 1998 Dec.
Abstract
Three complete genome sequences of thermophilic bacteria provide a wealth of information challenging current ideas concerning phylogeny and evolution, as well as the determinants of protein stability. Considering known protein structures from extremophiles, it becomes clear that no general conclusions can be drawn regarding adaptive mechanisms to extremes of physical conditions. Proteins are individuals that accumulate increments of stabilization; in thermophiles these come from charge clusters, networks of hydrogen bonds, optimization of packing and hydrophobic interactions, each in its own way. Recent examples indicate ways for the rational design of ultrastable proteins.
Similar articles
- Stability and stabilization of globular proteins in solution.
Jaenicke R. Jaenicke R. J Biotechnol. 2000 May 26;79(3):193-203. doi: 10.1016/s0168-1656(00)00236-4. J Biotechnol. 2000. PMID: 10867180 Review. - Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles.
Jaenicke R. Jaenicke R. FASEB J. 1996 Jan;10(1):84-92. doi: 10.1096/fasebj.10.1.8566552. FASEB J. 1996. PMID: 8566552 Review. - What ultrastable globular proteins teach us about protein stabilization.
Jaenicke R. Jaenicke R. Biochemistry (Mosc). 1998 Mar;63(3):312-21. Biochemistry (Mosc). 1998. PMID: 9526128 Review. - The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles.
Brininger C, Spradlin S, Cobani L, Evilia C. Brininger C, et al. Semin Cell Dev Biol. 2018 Dec;84:158-169. doi: 10.1016/j.semcdb.2017.12.016. Epub 2018 Feb 9. Semin Cell Dev Biol. 2018. PMID: 29288800 Review.
Cited by
- Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms.
Balasco N, Esposito L, De Simone A, Vitagliano L. Balasco N, et al. Protein Sci. 2013 Jul;22(7):1016-23. doi: 10.1002/pro.2279. Protein Sci. 2013. PMID: 23661276 Free PMC article. - Structural and catalytic effects of proline substitution and surface loop deletion in the extended active site of human carbonic anhydrase II.
Boone CD, Rasi V, Tu C, McKenna R. Boone CD, et al. FEBS J. 2015 Apr;282(8):1445-57. doi: 10.1111/febs.13232. Epub 2015 Mar 23. FEBS J. 2015. PMID: 25683338 Free PMC article. - An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin.
Karpowich NK, Song J, Wang DN. Karpowich NK, et al. J Mol Biol. 2016 Jul 31;428(15):3118-30. doi: 10.1016/j.jmb.2016.06.003. Epub 2016 Jun 13. J Mol Biol. 2016. PMID: 27312125 Free PMC article. - Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis.
Guérin F, Barbe S, Pizzut-Serin S, Potocki-Véronèse G, Guieysse D, Guillet V, Monsan P, Mourey L, Remaud-Siméon M, André I, Tranier S. Guérin F, et al. J Biol Chem. 2012 Feb 24;287(9):6642-54. doi: 10.1074/jbc.M111.322917. Epub 2011 Dec 29. J Biol Chem. 2012. PMID: 22210773 Free PMC article. - Thermostability of multidomain proteins: elongation factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and their chimeric forms.
Sanderová H, Hůlková M, Malon P, Kepková M, Jonák J. Sanderová H, et al. Protein Sci. 2004 Jan;13(1):89-99. doi: 10.1110/ps.03272504. Protein Sci. 2004. PMID: 14691225 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources