Phylogenetic evidence for the improved RNA higher-order structure in internal ribosome entry sequences of HCV and pestiviruses - PubMed (original) (raw)
Phylogenetic evidence for the improved RNA higher-order structure in internal ribosome entry sequences of HCV and pestiviruses
S Y Le et al. Virus Genes. 1998.
Abstract
The strong requirement for a small segment of the 5'-proximal coding sequence of hepatitis C virus (HCV) is one of the most remarkable features in the internal initiation of HCV mRNA translation. Phylogenetic analysis and RNA folding indicate a common RNA structure of the 5' untranslated region (UTR) of HCV and the animal pestiviruses, including HCV types 1-11, bovine viral diarrhea (BVDV), border disease virus (BDV) and hog cholera (HoCV). Although the common RNA structure shares similar features to that proposed for the internal ribosome entry sequence (IRES) of picornavirus, phylogenetic evidence suggests four new tertiary interactions between conserved terminal hairpin loops and between the terminal hairpin loop of F2b and the short coding sequence for HCV and pestiviruses. We suggest that the higher-order structures of IRES cis-acting elements for HCV and animal pestivirus are composed of stem-loop structures B-C, domains E-H, stem-loop structure J and four additional tertiary interactions. The common structure of IRES elements for these viruses forms a compact structure by these tertiary interactions and stem stacking. The active structural core is centered in the junction domain of E-H that is also conserved in all members of picornaviruses. Our model suggests that the requirement for a small segment of the 5' coding sequence is to form the distinct tertiary structure that facilitates the cis-acting function of the HCV IRES in the internal initiation of the translational control.
Similar articles
- Unusual folding regions and ribosome landing pad within hepatitis C virus and pestivirus RNAs.
Le SY, Sonenberg N, Maizel JV Jr. Le SY, et al. Gene. 1995 Mar 10;154(2):137-43. doi: 10.1016/0378-1119(94)00859-q. Gene. 1995. PMID: 7890155 - A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus.
Le SY, Siddiqui A, Maizel JV Jr. Le SY, et al. Virus Genes. 1996;12(2):135-47. doi: 10.1007/BF00572952. Virus Genes. 1996. PMID: 8879130 - Mutational analysis of the GB virus B internal ribosome entry site.
Rijnbrand R, Abell G, Lemon SM. Rijnbrand R, et al. J Virol. 2000 Jan;74(2):773-83. doi: 10.1128/jvi.74.2.773-783.2000. J Virol. 2000. PMID: 10623739 Free PMC article. - Relevance of RNA structure for the activity of picornavirus IRES elements.
Fernández-Miragall O, López de Quinto S, Martínez-Salas E. Fernández-Miragall O, et al. Virus Res. 2009 Feb;139(2):172-82. doi: 10.1016/j.virusres.2008.07.009. Epub 2008 Aug 15. Virus Res. 2009. PMID: 18692097 Review. - Divergent picornavirus IRES elements.
Belsham GJ. Belsham GJ. Virus Res. 2009 Feb;139(2):183-92. doi: 10.1016/j.virusres.2008.07.001. Epub 2008 Aug 20. Virus Res. 2009. PMID: 18675861 Review.
Cited by
- Development of short hairpin RNA expression vectors targeting the internal ribosomal entry site of the classical swine fever virus genomic RNA.
Okamoto R, Ito N, Ide Y, Kitab B, Sakoda Y, Tsukiyama-Kohara K. Okamoto R, et al. BMC Biotechnol. 2023 Sep 8;23(1):37. doi: 10.1186/s12896-023-00805-6. BMC Biotechnol. 2023. PMID: 37684601 Free PMC article. - RNA self-cleavage activated by ultraviolet light-induced oxidation.
Ariza-Mateos A, Prieto-Vega S, Díaz-Toledano R, Birk A, Szeto H, Mena I, Berzal-Herranz A, Gómez J. Ariza-Mateos A, et al. Nucleic Acids Res. 2012 Feb;40(4):1748-66. doi: 10.1093/nar/gkr822. Epub 2011 Oct 11. Nucleic Acids Res. 2012. PMID: 21989404 Free PMC article. - A search for structurally similar cellular internal ribosome entry sites.
Baird SD, Lewis SM, Turcotte M, Holcik M. Baird SD, et al. Nucleic Acids Res. 2007;35(14):4664-77. doi: 10.1093/nar/gkm483. Epub 2007 Jun 25. Nucleic Acids Res. 2007. PMID: 17591613 Free PMC article. - Hepatitis C virus internal ribosome entry site RNA contains a tertiary structural element in a functional domain of stem-loop II.
Lyons AJ, Lytle JR, Gomez J, Robertson HD. Lyons AJ, et al. Nucleic Acids Res. 2001 Jun 15;29(12):2535-41. doi: 10.1093/nar/29.12.2535. Nucleic Acids Res. 2001. PMID: 11410661 Free PMC article. - Cross-talk between orientation-dependent recognition determinants of a complex control RNA element, the enterovirus oriR.
Melchers WJ, Bakkers JM, Bruins Slot HJ, Galama JM, Agol VI, Pilipenko EV. Melchers WJ, et al. RNA. 2000 Jul;6(7):976-87. doi: 10.1017/s1355838200000480. RNA. 2000. PMID: 10917594 Free PMC article.
References
- J Virol. 1992 Mar;66(3):1476-83 - PubMed
- Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4942-6 - PubMed
- Nucleic Acids Res. 1992 Oct 11;20(19):5041-5 - PubMed
- Comput Appl Biosci. 1992 Jun;8(3):243-8 - PubMed
- Proc Natl Acad Sci U S A. 1990 Sep;87(17):6547-9 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources