Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery - PubMed (original) (raw)
Review
Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery
R V Skibbens et al. Annu Rev Genet. 1998.
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Similar articles
- Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae.
Fraschini R, Beretta A, Lucchini G, Piatti S. Fraschini R, et al. Mol Genet Genomics. 2001 Sep;266(1):115-25. doi: 10.1007/s004380100533. Mol Genet Genomics. 2001. PMID: 11589568 - Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation.
Lee BH, Amon A. Lee BH, et al. Science. 2003 Apr 18;300(5618):482-6. doi: 10.1126/science.1081846. Epub 2003 Mar 27. Science. 2003. PMID: 12663816 - Chromosome segregation: dual control ensures fidelity.
Taylor SS. Taylor SS. Curr Biol. 1999 Jul 29-Aug 12;9(15):R562-4. doi: 10.1016/s0960-9822(99)80355-8. Curr Biol. 1999. PMID: 10469560 Review. - Kinetochore structure and spindle assembly checkpoint signaling in the budding yeast, Saccharomyces cerevisiae.
Clarke DJ, Bachant J. Clarke DJ, et al. Front Biosci. 2008 May 1;13:6787-819. doi: 10.2741/3189. Front Biosci. 2008. PMID: 18508695 Review.
Cited by
- Functional redundancy in the maize meiotic kinetochore.
Yu HG, Dawe RK. Yu HG, et al. J Cell Biol. 2000 Oct 2;151(1):131-42. doi: 10.1083/jcb.151.1.131. J Cell Biol. 2000. PMID: 11018059 Free PMC article. - Genetic evidence for a role of phospholipase C at the budding yeast kinetochore.
DeLillo N, Romero C, Lin H, Vancura A. DeLillo N, et al. Mol Genet Genomics. 2003 May;269(2):261-70. doi: 10.1007/s00438-003-0832-4. Epub 2003 Mar 19. Mol Genet Genomics. 2003. PMID: 12756538 - Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion.
Hanna JS, Kroll ES, Lundblad V, Spencer FA. Hanna JS, et al. Mol Cell Biol. 2001 May;21(9):3144-58. doi: 10.1128/MCB.21.9.3144-3158.2001. Mol Cell Biol. 2001. PMID: 11287619 Free PMC article. - The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain.
Gardner RD, Poddar A, Yellman C, Tavormina PA, Monteagudo MC, Burke DJ. Gardner RD, et al. Genetics. 2001 Apr;157(4):1493-502. doi: 10.1093/genetics/157.4.1493. Genetics. 2001. PMID: 11290706 Free PMC article. - Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation.
Kerscher O, Hieter P, Winey M, Basrai MA. Kerscher O, et al. Genetics. 2001 Apr;157(4):1543-53. doi: 10.1093/genetics/157.4.1543. Genetics. 2001. PMID: 11290711 Free PMC article.