Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons - PubMed (original) (raw)
Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons
T Mickus et al. Biophys J. 1999 Feb.
Abstract
Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.
Similar articles
- Dendritic electrogenesis in rat hippocampal CA1 pyramidal neurons: functional aspects of Na+ and Ca2+ currents in apical dendrites.
Andreasen M, Nedergaard S. Andreasen M, et al. Hippocampus. 1996;6(1):79-95. doi: 10.1002/(SICI)1098-1063(1996)6:1<79::AID-HIPO13>3.0.CO;2-H. Hippocampus. 1996. PMID: 8878746 - Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons.
Jung HY, Mickus T, Spruston N. Jung HY, et al. J Neurosci. 1997 Sep 1;17(17):6639-46. doi: 10.1523/JNEUROSCI.17-17-06639.1997. J Neurosci. 1997. PMID: 9254676 Free PMC article. - Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.
Colbert CM, Magee JC, Hoffman DA, Johnston D. Colbert CM, et al. J Neurosci. 1997 Sep 1;17(17):6512-21. doi: 10.1523/JNEUROSCI.17-17-06512.1997. J Neurosci. 1997. PMID: 9254663 Free PMC article. - Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons.
Magee J, Hoffman D, Colbert C, Johnston D. Magee J, et al. Annu Rev Physiol. 1998;60:327-46. doi: 10.1146/annurev.physiol.60.1.327. Annu Rev Physiol. 1998. PMID: 9558467 Review. - Regulation of back-propagating action potentials in hippocampal neurons.
Johnston D, Hoffman DA, Colbert CM, Magee JC. Johnston D, et al. Curr Opin Neurobiol. 1999 Jun;9(3):288-92. doi: 10.1016/s0959-4388(99)80042-7. Curr Opin Neurobiol. 1999. PMID: 10395568 Review.
Cited by
- Molecular Pharmacology of Selective NaV1.6 and Dual NaV1.6/NaV1.2 Channel Inhibitors that Suppress Excitatory Neuronal Activity Ex Vivo.
Goodchild SJ, Shuart NG, Williams AD, Ye W, Parrish RR, Soriano M, Thouta S, Mezeyova J, Waldbrook M, Dean R, Focken T, Ghovanloo MR, Ruben PC, Scott F, Cohen CJ, Empfield J, Johnson JP. Goodchild SJ, et al. ACS Chem Neurosci. 2024 Mar 20;15(6):1169-1184. doi: 10.1021/acschemneuro.3c00757. Epub 2024 Feb 15. ACS Chem Neurosci. 2024. PMID: 38359277 Free PMC article. - Cholinergic modulation shifts the response of CA1 pyramidal cells to depolarizing ramps via TRPM4 channels with potential implications for place field firing.
Combe CL, Upchurch CM, Canavier CC, Gasparini S. Combe CL, et al. Elife. 2023 Jul 5;12:e84387. doi: 10.7554/eLife.84387. Elife. 2023. PMID: 37404129 Free PMC article. - Dendritic excitations govern back-propagation via a spike-rate accelerometer.
Park P, Wong-Campos D, Itkis DG, Lee BH, Qi Y, Davis H, Antin B, Pasarkar A, Grimm JB, Plutkis SE, Holland KL, Paninski L, Lavis LD, Cohen AE. Park P, et al. bioRxiv [Preprint]. 2024 May 18:2023.06.02.543490. doi: 10.1101/2023.06.02.543490. bioRxiv. 2024. PMID: 37398232 Free PMC article. Preprint. - A model of bi-directional interactions between complementary learning systems for memory consolidation of sequential experiences.
Howard MD, Skorheim SW, Pilly PK. Howard MD, et al. Front Syst Neurosci. 2022 Oct 13;16:972235. doi: 10.3389/fnsys.2022.972235. eCollection 2022. Front Syst Neurosci. 2022. PMID: 36313529 Free PMC article. - Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons.
Upchurch CM, Combe CL, Knowlton CJ, Rousseau VG, Gasparini S, Canavier CC. Upchurch CM, et al. J Neurosci. 2022 May 4;42(18):3768-3782. doi: 10.1523/JNEUROSCI.1914-21.2022. Epub 2022 Mar 24. J Neurosci. 2022. PMID: 35332085 Free PMC article.
References
- Neuron. 1992 Jun;8(6):1151-9 - PubMed
- Physiol Rev. 1991 Oct;71(4):1047-80 - PubMed
- J Physiol. 1987 Feb;383:339-48 - PubMed
- Muscle Nerve. 1988 May;11(5):502-10 - PubMed
- Neuron. 1989 Dec;3(6):695-704 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous