Ajay Shah | Purbanchal University, Nepal (original) (raw)
MS in Electronics & Communication Engineering, Seeking PhD Student Position in Wireless Power & Data Transfer
less
Uploads
Papers by Ajay Shah
In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility Transistor) ... more In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility Transistor) class-E power amplifier for the wireless power transfer link is designed and simulated on PSpice. A four-coil wireless power transfer link is modeled for maximum power transfer efficiency on ADS (Advanced Design System) and frequency splitting phenomenon is demonstrated, explained and analyzed. Two resonant coupling structures, series & mixed, are presented and compared. The efficiency performance of the link is studied using spiral and helical antennas of different wire make. In addition, techniques for improving efficiency of the wireless power transfer systems with changing coupling coefficient viz. frequency splitting phenomenon of the coils are proposed.
Power is a must to modern systems. Power transmission through wires is common. But not in every f... more Power is a must to modern systems. Power transmission through wires is common. But not in every field can wires be used because of certain limitations. The implantable biomedical devices like pacemakers, cardiac defibrillators, and artificial hearts require power supply for long term operation. The required power is supplied by driveline cable or by battery. WPT greatly reduces the risk of infection by eliminating the driveline cable which otherwise needs to puncture the skin to provide power and also saves the valuable space inside a person’s body in case of battery powered. In such fields, what we need is wireless transmission. Wireless transmission is useful in cases where instantaneous or continuous energy transfer is needed, but interconnecting wires are inconvenient, hazardous, or impossible. In this paper, a simple design method of a wireless power transfer system using 13.56 MHz ISM band is proposed. The proposed wireless power transfer system consists of rectifier, oscillator, power amplifier, power coil, load coil and two intermediate coils as transmitter antenna and receiver antenna inserted between power coil and load coil.
Conference Presentations by Ajay Shah
Abstract - In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility T... more Abstract - In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility Transistor) class-E power amplifier for the wireless power transfer link is designed and simulated on PSpice. A four-coil wireless power transfer link is modeled for maximum power transfer efficiency on ADS (Advanced Design System) and frequency splitting phenomenon is demonstrated, explained and analyzed. Two resonant coupling structures, series & mixed, are presented and compared. The efficiency performance of the link is studied using spiral and helical antennas of different wire make. In addition, techniques for improving efficiency of the wireless power transfer systems with changing coupling coefficient viz. frequency splitting phenomenon of the coils are proposed.
Power is a must to modern systems. Power transmission through wires is common. But not in every f... more Power is a must to modern systems. Power transmission through wires is common. But not in every field can wires be used because of certain limitations. The implantable biomedical devices like pacemakers, cardiac defibrillators, and artificial hearts require power supply for long term operation. The required power is supplied by driveline cable or by battery. WPT greatly reduces the risk of infection by eliminating the driveline cable which otherwise needs to puncture the skin to provide power and also saves the valuable space inside a person’s body in case of battery powered. In such fields, what we need is wireless transmission. Wireless transmission is useful in cases where instantaneous or continuous energy transfer is needed, but interconnecting wires are inconvenient, hazardous, or impossible. In this paper, a simple design method of a wireless power transfer system using 13.56 MHz ISM band is proposed. The proposed wireless power transfer system consists of rectifier, oscillator, power amplifier, power coil, load coil and two intermediate coils as transmitter antenna and receiver antenna inserted between power coil and load coil.
In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility Transistor) ... more In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility Transistor) class-E power amplifier for the wireless power transfer link is designed and simulated on PSpice. A four-coil wireless power transfer link is modeled for maximum power transfer efficiency on ADS (Advanced Design System) and frequency splitting phenomenon is demonstrated, explained and analyzed. Two resonant coupling structures, series & mixed, are presented and compared. The efficiency performance of the link is studied using spiral and helical antennas of different wire make. In addition, techniques for improving efficiency of the wireless power transfer systems with changing coupling coefficient viz. frequency splitting phenomenon of the coils are proposed.
Power is a must to modern systems. Power transmission through wires is common. But not in every f... more Power is a must to modern systems. Power transmission through wires is common. But not in every field can wires be used because of certain limitations. The implantable biomedical devices like pacemakers, cardiac defibrillators, and artificial hearts require power supply for long term operation. The required power is supplied by driveline cable or by battery. WPT greatly reduces the risk of infection by eliminating the driveline cable which otherwise needs to puncture the skin to provide power and also saves the valuable space inside a person’s body in case of battery powered. In such fields, what we need is wireless transmission. Wireless transmission is useful in cases where instantaneous or continuous energy transfer is needed, but interconnecting wires are inconvenient, hazardous, or impossible. In this paper, a simple design method of a wireless power transfer system using 13.56 MHz ISM band is proposed. The proposed wireless power transfer system consists of rectifier, oscillator, power amplifier, power coil, load coil and two intermediate coils as transmitter antenna and receiver antenna inserted between power coil and load coil.
Abstract - In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility T... more Abstract - In this paper, a high efficiency Gallium nitride (GaN), HEMT (High Electron Mobility Transistor) class-E power amplifier for the wireless power transfer link is designed and simulated on PSpice. A four-coil wireless power transfer link is modeled for maximum power transfer efficiency on ADS (Advanced Design System) and frequency splitting phenomenon is demonstrated, explained and analyzed. Two resonant coupling structures, series & mixed, are presented and compared. The efficiency performance of the link is studied using spiral and helical antennas of different wire make. In addition, techniques for improving efficiency of the wireless power transfer systems with changing coupling coefficient viz. frequency splitting phenomenon of the coils are proposed.
Power is a must to modern systems. Power transmission through wires is common. But not in every f... more Power is a must to modern systems. Power transmission through wires is common. But not in every field can wires be used because of certain limitations. The implantable biomedical devices like pacemakers, cardiac defibrillators, and artificial hearts require power supply for long term operation. The required power is supplied by driveline cable or by battery. WPT greatly reduces the risk of infection by eliminating the driveline cable which otherwise needs to puncture the skin to provide power and also saves the valuable space inside a person’s body in case of battery powered. In such fields, what we need is wireless transmission. Wireless transmission is useful in cases where instantaneous or continuous energy transfer is needed, but interconnecting wires are inconvenient, hazardous, or impossible. In this paper, a simple design method of a wireless power transfer system using 13.56 MHz ISM band is proposed. The proposed wireless power transfer system consists of rectifier, oscillator, power amplifier, power coil, load coil and two intermediate coils as transmitter antenna and receiver antenna inserted between power coil and load coil.