Apply a function to each element of a vector — map (original) (raw)

The map functions transform their input by applying a function to each element of a list or atomic vector and returning an object of the same length as the input.

Usage

map(.x, .f, ..., .progress = FALSE)

map_lgl(.x, .f, ..., .progress = FALSE)

map_int(.x, .f, ..., .progress = FALSE)

map_dbl(.x, .f, ..., .progress = FALSE)

map_chr(.x, .f, ..., .progress = FALSE)

map_vec(.x, .f, ..., .ptype = NULL, .progress = FALSE)

walk(.x, .f, ..., .progress = FALSE)

Arguments

.x

A list or atomic vector.

.f

A function, specified in one of the following ways:

...

Additional arguments passed on to the mapped function.

We now generally recommend against using ... to pass additional (constant) arguments to .f. Instead use a shorthand anonymous function:

# Instead of
x |> map(f, 1, 2, collapse = ",")
# do:
x |> map(\(x) f(x, 1, 2, collapse = ","))

This makes it easier to understand which arguments belong to which function and will tend to yield better error messages.

.progress

Whether to show a progress bar. Use TRUE to turn on a basic progress bar, use a string to give it a name, or seeprogress_bars for more details.

.ptype

If NULL, the default, the output type is the common type of the elements of the result. Otherwise, supply a "prototype" giving the desired type of output.

Value

The output length is determined by the length of the input. The output names are determined by the input names. The output type is determined by the suffix:

Any errors thrown by .f will be wrapped in an error with classpurrr_error_indexed.

See also

Examples

# Compute normal distributions from an atomic vector
1:10 |>
  map(rnorm, n = 10)
#> [[1]]
#>  [1]  1.6215527  2.1484116 -0.8218177  0.7526747  0.7558004  0.7172946
#>  [7]  0.4463006  1.6289820  3.0650249 -0.6309894
#> 
#> [[2]]
#>  [1] 2.5124269 0.1369885 1.4779875 1.9473981 2.5429963 1.0859252 2.4681544
#>  [8] 2.3629513 0.6954565 2.7377763
#> 
#> [[3]]
#>  [1] 4.888505 2.902555 2.064153 2.984050 2.173211 1.487600 3.935363
#>  [8] 3.176489 3.243685 4.623549
#> 
#> [[4]]
#>  [1] 4.112038 3.866003 2.089913 3.720763 3.686554 5.067308 4.070035
#>  [8] 3.360877 3.950035 3.748517
#> 
#> [[5]]
#>  [1] 5.444797 7.755418 5.046531 5.577709 5.118195 3.088280 5.862086
#>  [8] 4.756763 4.793913 5.019178
#> 
#> [[6]]
#>  [1] 6.029561 6.549828 3.725885 8.682557 5.638779 6.213356 7.074346
#>  [8] 5.334912 7.113952 5.754104
#> 
#> [[7]]
#>  [1] 5.822437 6.024149 8.065057 7.131671 7.488629 5.300549 5.529264
#>  [8] 7.284150 8.337320 7.236696
#> 
#> [[8]]
#>  [1] 9.318293 8.523910 8.606748 7.890064 8.172182 7.909673 9.924343
#>  [8] 9.298393 8.748791 8.556224
#> 
#> [[9]]
#>  [1]  8.451743 10.110535  6.387666  8.844306  9.433890  8.618049  9.424188
#>  [8] 10.063102 10.048713  8.961897
#> 
#> [[10]]
#>  [1] 10.486149 11.672883  9.645639 10.946348 11.316826  9.703360  9.612786
#>  [8]  9.214567  8.943263  9.204459
#> 

# You can also use an anonymous function
1:10 |>
  map(\(x) rnorm(10, x))
#> [[1]]
#>  [1] -0.7562754  0.3094621  0.4414580  0.4633367  1.2271271  1.9784549
#>  [7]  0.7911173 -0.3994105  1.2585373  0.5582005
#> 
#> [[2]]
#>  [1] 2.5685999 4.1268505 2.4248584 0.3157185 2.2494018 3.0728383 4.0393693
#>  [8] 2.4494538 3.3918140 2.4265665
#> 
#> [[3]]
#>  [1] 3.107584 3.022295 3.603611 2.737349 2.471736 3.192149 1.853800
#>  [8] 3.846185 3.081720 1.694883
#> 
#> [[4]]
#>  [1] 3.055088 4.454342 3.144797 3.713105 4.894962 4.067304 3.837324
#>  [8] 3.172690 5.876506 4.766440
#> 
#> [[5]]
#>  [1] 5.979957 6.321781 3.880289 5.514600 3.490900 6.532741 5.429147
#>  [8] 5.122103 3.861988 4.441985
#> 
#> [[6]]
#>  [1] 7.052539 6.677684 6.038500 5.643619 6.782844 6.804412 4.099939
#>  [8] 6.935784 5.690948 6.263067
#> 
#> [[7]]
#>  [1] 5.209408 6.211741 5.866978 7.363653 6.714112 7.517669 6.897091
#>  [8] 6.025930 8.270672 7.960865
#> 
#> [[8]]
#>  [1]  8.768721  9.035931  7.526113  6.724665  7.694379 10.211769  6.958332
#>  [8]  6.853476  6.324673  9.525939
#> 
#> [[9]]
#>  [1]  9.554186 10.993110  8.845879 11.564408 10.061999 10.142695 10.123839
#>  [8]  8.602999  8.176739  8.421115
#> 
#> [[10]]
#>  [1] 11.763789 10.132992 10.376499 11.138708 11.241263 10.612091  9.570620
#>  [8] 11.360461  9.929143  9.727846
#> 

# Simplify output to a vector instead of a list by computing the mean of the distributions
1:10 |>
  map(rnorm, n = 10) |>  # output a list
  map_dbl(mean)           # output an atomic vector
#>  [1]  0.449421  2.083007  2.739160  4.144721  4.716806  5.978606  6.593186
#>  [8]  8.619169  9.087989 10.312465

# Using set_names() with character vectors is handy to keep track
# of the original inputs:
set_names(c("foo", "bar")) |> map_chr(paste0, ":suffix")
#>          foo          bar 
#> "foo:suffix" "bar:suffix" 

# Working with lists
favorite_desserts <- list(Sophia = "banana bread", Eliott = "pancakes", Karina = "chocolate cake")
favorite_desserts |> map_chr(\(food) paste(food, "rocks!"))
#>                  Sophia                  Eliott                  Karina 
#>   "banana bread rocks!"       "pancakes rocks!" "chocolate cake rocks!" 

# Extract by name or position
# .default specifies value for elements that are missing or NULL
l1 <- list(list(a = 1L), list(a = NULL, b = 2L), list(b = 3L))
l1 |> map("a", .default = "???")
#> [[1]]
#> [1] 1
#> 
#> [[2]]
#> [1] "???"
#> 
#> [[3]]
#> [1] "???"
#> 
l1 |> map_int("b", .default = NA)
#> [1] NA  2  3
l1 |> map_int(2, .default = NA)
#> [1] NA  2 NA

# Supply multiple values to index deeply into a list
l2 <- list(
  list(num = 1:3,     letters[1:3]),
  list(num = 101:103, letters[4:6]),
  list()
)
l2 |> map(c(2, 2))
#> [[1]]
#> [1] "b"
#> 
#> [[2]]
#> [1] "e"
#> 
#> [[3]]
#> NULL
#> 

# Use a list to build an extractor that mixes numeric indices and names,
# and .default to provide a default value if the element does not exist
l2 |> map(list("num", 3))
#> [[1]]
#> [1] 3
#> 
#> [[2]]
#> [1] 103
#> 
#> [[3]]
#> NULL
#> 
l2 |> map_int(list("num", 3), .default = NA)
#> [1]   3 103  NA

# Working with data frames
# Use map_lgl(), map_dbl(), etc to return a vector instead of a list:
mtcars |> map_dbl(sum)
#>      mpg      cyl     disp       hp     drat       wt     qsec       vs 
#>  642.900  198.000 7383.100 4694.000  115.090  102.952  571.160   14.000 
#>       am     gear     carb 
#>   13.000  118.000   90.000 

# A more realistic example: split a data frame into pieces, fit a
# model to each piece, summarise and extract R^2
mtcars |>
  split(mtcars$cyl) |>
  map(\(df) lm(mpg ~ wt, data = df)) |>
  map(summary) |>
  map_dbl("r.squared")
#>         4         6         8 
#> 0.5086326 0.4645102 0.4229655