openinference-instrumentation-langchain (original) (raw)

Project description

Python auto-instrumentation library for LangChain.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-langchain

Quickstart

Install packages needed for this demonstration.

pip install openinference-instrumentation-langchain langchain arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LangChainInstrumentor to trace langchain and send the traces to Phoenix at the endpoint shown below.

from langchain.chains import LLMChain from langchain_core.prompts import PromptTemplate from langchain_openai import OpenAI from openinference.instrumentation.langchain import LangChainInstrumentor from opentelemetry import trace as trace_api from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.sdk import trace as trace_sdk from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces" tracer_provider = trace_sdk.TracerProvider() trace_api.set_tracer_provider(tracer_provider) tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint))) tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

LangChainInstrumentor().instrument()

To demonstrate langchain tracing, we'll make a simple chain to tell a joke. First, configure your OpenAI credentials.

import os

os.environ["OPENAI_API_KEY"] = ""

Now we can create a chain and run it.

prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template) llm = LLMChain(llm=OpenAI(), prompt=prompt, metadata={"category": "jokes"}) completion = llm.predict(adjective="funny", metadata={"variant": "funny"}) print(completion)

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_langchain-0.1.43.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.43.tar.gz | Algorithm | Hash digest | | | ----------- | ---------------------------------------------------------------- | | | SHA256 | 18b5ac3ba52fcb85a576dd94175e025c6cbacce9cb2619a8f8b281b2c30e06cb | | | MD5 | 80ce3d29f1f42c7526e6a440175424a9 | | | BLAKE2b-256 | 6984f85ea5c4b73ee6570f5f4a0a247243fc08cde8ed3b5c4ae40df7b9580c38 | |

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_langchain-0.1.43-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.43-py3-none-any.whl | Algorithm | Hash digest | | | ----------- | ---------------------------------------------------------------- | | | SHA256 | 66645839eac2c3cf986bc917ef309dc89c468f3bb0a56b20eaba6c89b8b44e9a | | | MD5 | b0e9a44d3fa873cfced7bb60a9649c8e | | | BLAKE2b-256 | 27b108b85cf9af64d8e994e554edda3898af5563b9b6073f6690a463af67338d | |

See more details on using hashes here.