openinference-instrumentation-pydantic-ai (original) (raw)

Project description

OpenInference PydanticAI

pypi

Python auto-instrumentation library for PydanticAI. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.

Installation

pip install openinference-instrumentation-pydantic-ai

Quickstart

This quickstart shows you how to instrument your PydanticAI agents.

Install required packages.

pip install pydantic-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

phoenix serve

Here's a simple example that demonstrates how to use PydanticAI with OpenInference instrumentation:

import os from pydantic import BaseModel from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider from opentelemetry import trace from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.sdk.trace import TracerProvider from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor from opentelemetry.sdk.trace.export import SimpleSpanProcessor

Set your OpenAI API key

os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

Set up the tracer provider

tracer_provider = TracerProvider() trace.set_tracer_provider(tracer_provider)

Add the OpenInference span processor

endpoint = "http://127.0.0.1:6006/v1/traces" exporter = OTLPSpanExporter(endpoint=endpoint) tracer_provider.add_span_processor(OpenInferenceSpanProcessor()) tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))

Define your Pydantic model

class LocationModel(BaseModel): city: str country: str

Create and configure the agent

model = OpenAIModel("gpt-4", provider=OpenAIProvider()) agent = Agent(model, output_type=LocationModel, instrument=True)

Run the agent

result = agent.run_sync("The windy city in the US of A.") print(result)

This example:

  1. Sets up OpenTelemetry tracing with Phoenix
  2. Defines a simple Pydantic model for location data
  3. Creates a PydanticAI agent with instrumentation enabled
  4. Runs a query and gets structured output

The traces will be visible in the Phoenix UI at http://localhost:6006.

More Info

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.3.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.3.tar.gz | Algorithm | Hash digest | | | ----------- | ---------------------------------------------------------------- | | | SHA256 | fff0ec9f986f1215d3579910abd18df12262197436f6b142a0fdd783310f22a4 | | | MD5 | 0cba2177b85569b59b9b64ec5f30aced | | | BLAKE2b-256 | e687392a9b5b4913f3f05daa7482fd713643f4e64bdcb76e7152b0f51dc758c8 | |

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.3-py3-none-any.whl | Algorithm | Hash digest | | | ----------- | ---------------------------------------------------------------- | | | SHA256 | fe130ae85aecbe64358c5d13a80f22746f1b545b4d8b93a2bac6e0b20e391b85 | | | MD5 | 74c09da7f473b139b84f440ea7ad32e8 | | | BLAKE2b-256 | 7ed4638fc42d3ca69d735f81c3405c1b61b9a85c4421d2e34e3b280097f85d43 | |

See more details on using hashes here.