torch_geometric.transforms.GDC — pytorch_geometric documentation (original) (raw)

pytorch_geometric

class GDC(self_loop_weight: float = 1.0, normalization_in: str = 'sym', normalization_out: str = 'col', diffusion_kwargs: Dict[str, Any] = {'alpha': 0.15, 'method': 'ppr'}, sparsification_kwargs: Dict[str, Any] = {'avg_degree': 64, 'method': 'threshold'}, exact: bool = True)[source]

Bases: BaseTransform

Processes the graph via Graph Diffusion Convolution (GDC) from the“Diffusion Improves Graph Learning”paper (functional name: gdc).

Note

The paper offers additional advice on how to choose the hyperparameters. For an example of using GCN with GDC, see examples/gcn.py.

Parameters:

Return type:

torch_geometric.data.Data