MinMaxObserver — PyTorch 2.7 documentation (original) (raw)
class torch.ao.quantization.observer.MinMaxObserver(dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, factory_kwargs=None, eps=1.1920928955078125e-07, is_dynamic=False, **kwargs)[source][source]¶
Observer module for computing the quantization parameters based on the running min and max values.
This observer uses the tensor min/max statistics to compute the quantization parameters. The module records the running minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters.
Parameters
- dtype – dtype argument to the quantize node needed to implement the reference model spec.
- qscheme – Quantization scheme to be used
- reduce_range – Reduces the range of the quantized data type by 1 bit
- quant_min – Minimum quantization value. If unspecified, it will follow the 8-bit setup.
- quant_max – Maximum quantization value. If unspecified, it will follow the 8-bit setup.
- eps (Tensor) – Epsilon value for float32, Defaults to torch.finfo(torch.float32).eps.
Given running min/max as xminx_\text{min} and xmaxx_\text{max}, scale ss and zero point zz are computed as:
The running minimum/maximum xmin/maxx_\text{min/max} is computed as:
xmin={min(X)if xmin=Nonemin(xmin,min(X))otherwisexmax={max(X)if xmax=Nonemax(xmax,max(X))otherwise\begin{array}{ll} x_\text{min} &= \begin{cases} \min(X) & \text{if~}x_\text{min} = \text{None} \\ \min\left(x_\text{min}, \min(X)\right) & \text{otherwise} \end{cases}\\ x_\text{max} &= \begin{cases} \max(X) & \text{if~}x_\text{max} = \text{None} \\ \max\left(x_\text{max}, \max(X)\right) & \text{otherwise} \end{cases}\\ \end{array}
where XX is the observed tensor.
The scale ss and zero point zz are then computed as:
if Symmetric:s=2max(∣xmin∣,xmax)/(Qmax−Qmin)z={0if dtype is qint8128otherwiseOtherwise:s=(xmax−xmin)/(Qmax−Qmin)z=Qmin−round(xmin/s)\begin{aligned} \text{if Symmetric:}&\\ &s = 2 \max(|x_\text{min}|, x_\text{max}) / \left( Q_\text{max} - Q_\text{min} \right) \\ &z = \begin{cases} 0 & \text{if dtype is qint8} \\ 128 & \text{otherwise} \end{cases}\\ \text{Otherwise:}&\\ &s = \left( x_\text{max} - x_\text{min} \right ) / \left( Q_\text{max} - Q_\text{min} \right ) \\ &z = Q_\text{min} - \text{round}(x_\text{min} / s) \end{aligned}
where QminQ_\text{min} and QmaxQ_\text{max} are the minimum and maximum of the quantized data type.
Warning
dtype
can only take torch.qint8
or torch.quint8
.
Note
If the running minimum equals to the running maximum, the scale and zero_point are set to 1.0 and 0.
calculate_qparams()[source][source]¶
Calculates the quantization parameters.
forward(x_orig)[source][source]¶
Records the running minimum and maximum of x
.
reset_min_max_vals()[source][source]¶
Resets the min/max values.