AvgPool2d — PyTorch 2.7 documentation (original) (raw)
class torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source][source]¶
Applies a 2D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size (N,C,H,W)(N, C, H, W), output (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) and kernel_size
(kH,kW)(kH, kW)can be precisely described as:
out(Ni,Cj,h,w)=1kH∗kW∑m=0kH−1∑n=0kW−1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
If padding
is non-zero, then the input is implicitly zero-padded on both sides for padding
number of points.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.
The parameters kernel_size
, stride
, padding
can either be:
- a single
int
– in which case the same value is used for the height and width dimension- a
tuple
of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
Parameters
- kernel_size (Union[_int,_ tuple[_int,_ int] ]) – the size of the window
- stride (Union[_int,_ tuple[_int,_ int] ]) – the stride of the window. Default value is
kernel_size
- padding (Union[_int,_ tuple[_int,_ int] ]) – implicit zero padding to be added on both sides
- ceil_mode (bool) – when True, will use ceil instead of floor to compute the output shape
- count_include_pad (bool) – when True, will include the zero-padding in the averaging calculation
- divisor_override (Optional_[_int]) – if specified, it will be used as divisor, otherwise size of the pooling region will be used.
Shape:
- Input: (N,C,Hin,Win)(N, C, H_{in}, W_{in}) or (C,Hin,Win)(C, H_{in}, W_{in}).
- Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) or (C,Hout,Wout)(C, H_{out}, W_{out}), where
Hout=⌊Hin+2×padding[0]−kernel_size[0]stride[0]+1⌋H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
Wout=⌊Win+2×padding[1]−kernel_size[1]stride[1]+1⌋W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
Per the note above, ifceil_mode
is True and (Hout−1)×stride[0]≥Hin+padding[0](H_{out} - 1)\times \text{stride}[0]\geq H_{in} + \text{padding}[0], we skip the last window as it would start in the bottom padded region, resulting in HoutH_{out} being reduced by one.
The same applies for WoutW_{out}.
Examples:
pool of square window of size=3, stride=2
m = nn.AvgPool2d(3, stride=2)
pool of non-square window
m = nn.AvgPool2d((3, 2), stride=(2, 1)) input = torch.randn(20, 16, 50, 32) output = m(input)