torch.randint — PyTorch 2.7 documentation (original) (raw)
torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶
Returns a tensor filled with random integers generated uniformly between low
(inclusive) and high
(exclusive).
The shape of the tensor is defined by the variable argument size
.
Note
With the global dtype default (torch.float32
), this function returns a tensor with dtype torch.int64
.
Parameters
- low (int, optional) – Lowest integer to be drawn from the distribution. Default: 0.
- high (int) – One above the highest integer to be drawn from the distribution.
- size (tuple) – a tuple defining the shape of the output tensor.
Keyword Arguments
- generator (torch.Generator, optional) – a pseudorandom number generator for sampling
- out (Tensor, optional) – the output tensor.
- dtype (torch.dtype, optional) – if
None
, this function returns a tensor with dtypetorch.int64
. - layout (torch.layout, optional) – the desired layout of returned Tensor. Default:
torch.strided
. - device (torch.device, optional) – the desired device of returned tensor. Default: if
None
, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
torch.randint(3, 5, (3,)) tensor([4, 3, 4])
torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]])
torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]])