Paul J Hurd | Queen Mary, University of London (original) (raw)
Books by Paul J Hurd
Papers by Paul J Hurd
bioRxiv (Cold Spring Harbor Laboratory), Dec 24, 2023
Background DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modifi... more Background DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as 'mosaic'. Yet, the role and developmental dynamics of 5mC and how these explain interspecific differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. Results Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, and there is a gradual and global, age-dependent demethylation in adult stages. Moreover, reducing 5mC levels with cytidine analogues during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. Conclusions Our study indicates that global epigenetic erosion during development and ageing is an ancestral feature of bilateral animals. However, the tight link between transcription and gene .
Briefings in Functional Genomics, Dec 1, 2010
Ecology and Evolution, 2020
Understanding the effects of temperature on ecological and evolutionary processes is crucial for ... more Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of the...
bioRxiv, 2021
European Apis mellifera and Asian Apis cerana honeybees, are essential crop pollinators. Microbio... more European Apis mellifera and Asian Apis cerana honeybees, are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of 16S rRNA and internally transcribed spacers (ITSs) allow identification of the metabiome. These methods provide a tool for monitoring otherwise uncultured microbes isolated from the gut of the honeybees. They also help monitor the composition of the gut fungi and, intriguingly, pollens collected by the insect. Here, we present data from amplicon sequencing of the 16S rRNA and ITS2 regions from honeybees collected at various time points from anthropogenic landforms as urban areas in Poland, UK, Spain, Greece, and Thailand. We have analysed microbial composition of honeybee intestine as well as fungi and pollens. We conclude that differences between samples were mainly influenced by the bacteria, plant pol...
The controlled formation of sequence specific DNA protein complexes is a fundamental feature of m... more The controlled formation of sequence specific DNA protein complexes is a fundamental feature of most genetic transactions. Studies of the impact of point mutations on the function of individual components, such as repressors, remains a key aspect of many Systems and Synthetic Biology research programmes. One of the most dramatic systemic consequences of a point mutation is exhibited by the monomeric DNA methyltransferases M.HhaI and M.EcoRII, where substitution of a single, catalytic cysteine by either glycine or alanine, creates a lethal gain of function phenotype.In vivo expression of these point mutants promotes the deposition of high affinity nucleoprotein complexes that arrest replication in vivo, causing cell death. Interestingly, it appears that a systemic response to expression of these mutant enzymes is dramatically enhanced when they are expressed as synthetic dimers. A previously unreported form of “mutational rescue” appears to be triggered as a result of networked cross...
Nucleic Acids Research
The honey bee genome has the capacity to produce three phenotypically distinct organisms (two dip... more The honey bee genome has the capacity to produce three phenotypically distinct organisms (two diploid female castes: queen and worker, and a haploid male drone). Previous studies have implicated metabolic flux acting via epigenetic regulation in directing nutrition-driven phenotypic plasticity in the honey bee. However, the cis-acting DNA regulatory elements that establish tissue and polyphenism -specific epigenomes and gene expression programmes, remain unclear. Using a high resolution multiomic approach including assay for transposase-accessible chromatin by sequencing (ATAC-seq), RNA-seq and ChIP-seq, we produce the first genome-wide maps of the regulatory landscape across all three adult honey bee phenotypes identifying > 5000 regulatory regions in queen, 7500 in worker and 6500 in drone, with the vast majority of these sites located within intronic regions. These regions are defined by positive enrichment of H3K27ac and depletion of H3K4me3 and show a positive correlation wi...
Blood, 2007
The ability to impose exogenous targeted epigenetic changes in the genome represents an attractiv... more The ability to impose exogenous targeted epigenetic changes in the genome represents an attractive goal in gene therapy for the heritable repression of target genes, while potentially enabling the generation and subsequent study of the downstream effects of de novo epigenetic events, which are known to occur in disease. Here we demonstrate the ability of zinc-finger peptides to deliver DNA cytosine methylation in vivo to a genomic target promoter, when expressed as fusions with a mutant prokaryotic DNA cytosine methyltransferase enzyme, thus mimicking cellular de novo methylation events. We show for the first time targeted gene silencing in response to directed DNA cytosine methylation via initiation of a repressive chromatin signature at a targeted genomic locus, characterised by elevation of histone H3K9Me2 and reduction of H3K4Me3 levels at that region. This transcriptional repression is maintained in the absence of sustained targeted methyltransferase action, confirming epigenet...
Pathogens, 2021
European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiom... more European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of the 16S rRNA from bacteria and the internally transcribed spacer (ITS) regions from fungi and plants allow identification of the metabiome. These methods provide a tool for monitoring otherwise uncultured microbes isolated from the gut of the honeybees. They also help monitor the composition of the gut fungi and, intriguingly, pollen collected by the insect. Here, we present data from amplicon sequencing of the 16S rRNA from bacteria and ITS2 regions from fungi and plants derived from honeybees collected at various time points from anthropogenic landscapes such as urban areas in Poland, UK, Spain, Greece, and Thailand. We have analysed microbial content of honeybee intestine as well as fungi and pollens. ...
PloS one, 2018
Proper bioelement content is crucial for the health and wellness of all organisms, including hone... more Proper bioelement content is crucial for the health and wellness of all organisms, including honeybees. However, the situation is more complicated in these important pollinators due to the fact that they change their physiology during winter in order to survive the relatively harsh climatic conditions. Additionally, honeybees are susceptible to many diseases such as nosemosis, which during winter can depopulate an entire colony. Here we show that summer bees have a markedly higher content of important bioelements such as: Al, Cu, P, V, (physiologically essential); Ca, K, Mg, (electrolytic); Cr, Se, Zn, (enzymatic); As, Hg, (toxic). In contrast, a markedly higher content of: Fe (physiologically essential); Mn, Ni, (enzymatic); Cd (exclusively toxic) were present in winter bees. Importantly, N. ceranae infection resulted in an increased honeybee bioelement content of: S, Sr (physiologically essential) and Pb (exclusively toxic), whereas the Nosema-free worker-bees had higher amounts o...
Molecular human reproduction, Jan 23, 2015
Human parturition is associated with many pro-inflammatory mediators which are regulated by the n... more Human parturition is associated with many pro-inflammatory mediators which are regulated by the nuclear factor-kappaB (NF-κB) family of transcription factors. In the present study, we employed a ChIP-on-chip approach to define genomic loci within chromatin of PHM1-31 myometrial cells that were occupied by RelA-containing NF-κB dimers in response to a TNF stimulation of 1 h. In TNF-stimulated PHM1-31 cells, anti-RelA serum enriched 13 300 chromatin regions; importantly, 11 110 regions were also enriched by anti-RelA antibodies in the absence of TNF. DNA sequences in these regions, from both unstimulated or TNF-stimulated PHM1-31 cultures, were associated with genic regions including IκBα, COX-2, IL6RN, Jun and KCNMB3. TNF-induced binding events at a consensus κB site numbered 1667; these were represented by 112 different instances of the consensus κB motif. Of the 1667 consensus κB motif occurrences, 770 (46.2%) were identified within intronic regions. In unstimulated PHM1-31 cells, ...
Journal of Molecular Biology, 2009
Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway... more Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the
RNA, 2015
Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-bi... more Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullinat...
Genome research, Oct 1, 2018
The capacity of the honey bee to produce three phenotypically distinct organisms (two female cast... more The capacity of the honey bee to produce three phenotypically distinct organisms (two female castes; queens and sterile workers, and haploid male drones) from one genotype represents one of the most remarkable examples of developmental plasticity in any phylum. The queen-worker morphological and reproductive divide is environmentally controlled during post-embryonic development by differential feeding. Previous studies implicated metabolic flux acting via epigenetic regulation, in particular DNA methylation and microRNAs, in establishing distinct patterns of gene expression underlying caste-specific developmental trajectories. We produce the first genome-wide maps of chromatin structure in the honey bee at a key larval stage in which developmental canalization into queen or worker is virtually irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac, and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key ...
Nucleic Acids Research , 2022
The honey bee genome has the capacity to produce three phenotypically distinct organisms (two dip... more The honey bee genome has the capacity to produce three phenotypically distinct organisms (two diploid female castes: queen and worker, and a haploid male drone). Previous studies have implicated metabolic flux acting via epigenetic regulation in directing nutrition-driven phenotypic plasticity in the honey bee. However, the cis-acting DNA regulatory elements that establish tissue and polyphenism-specific epigenomes and gene expression programmes, remain unclear. Using a high resolution multiomic approach including assay for transposase-accessible chromatin by sequencing (ATAC-seq), RNA-seq and ChIP-seq, we produce the first genome-wide maps of the regulatory landscape across all three adult honey bee phenotypes identifying > 5000 regulatory regions in queen, 7500 in worker and 6500 in drone, with the vast majority of these sites located within intronic regions. These regions are defined by positive enrichment of H3K27ac and depletion of H3K4me3 and show a positive correlation with gene expression. Using ATAC-seq footprinting we determine queen, worker and dronespecific transcription factor occupancy and uncover novel phenotype-specific regulatory networks identifying two key nuclear receptors that have previously been implicated in caste-determination and adult behavioural maturation in honey bees; ecdysone receptor and ultraspiracle. Collectively, this study provides novel insights into key gene regulatory networks that are associated with these distinct polyphenisms in the honey bee.
Proceedings of the National Academy of Sciences, 2019
Significance Our results show that the experience of being alone has immediate consequences on br... more Significance Our results show that the experience of being alone has immediate consequences on brain gene activity. Clearly this is important for the human context, where loneliness (i.e., perceived social isolation) is a risk factor for psychological and neurodegenerative disorders. As the response occurs in brain areas involved in higher-order cognition and perception, these changes in gene activity may influence the ongoing processing of experience. Prior studies in humans have measured effects of social isolation in circulating leukocytes, but not in brain, and studies in mammalian models have typically focused on effects of much longer isolation periods (weeks or more). The results also bear on interpretation of animal experiments where short-term isolation is used to establish the baseline reference condition.
Scientific Reports
In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the h... more In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7–4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern s...
bioRxiv (Cold Spring Harbor Laboratory), Dec 24, 2023
Background DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modifi... more Background DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as 'mosaic'. Yet, the role and developmental dynamics of 5mC and how these explain interspecific differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. Results Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, and there is a gradual and global, age-dependent demethylation in adult stages. Moreover, reducing 5mC levels with cytidine analogues during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. Conclusions Our study indicates that global epigenetic erosion during development and ageing is an ancestral feature of bilateral animals. However, the tight link between transcription and gene .
Briefings in Functional Genomics, Dec 1, 2010
Ecology and Evolution, 2020
Understanding the effects of temperature on ecological and evolutionary processes is crucial for ... more Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of the...
bioRxiv, 2021
European Apis mellifera and Asian Apis cerana honeybees, are essential crop pollinators. Microbio... more European Apis mellifera and Asian Apis cerana honeybees, are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of 16S rRNA and internally transcribed spacers (ITSs) allow identification of the metabiome. These methods provide a tool for monitoring otherwise uncultured microbes isolated from the gut of the honeybees. They also help monitor the composition of the gut fungi and, intriguingly, pollens collected by the insect. Here, we present data from amplicon sequencing of the 16S rRNA and ITS2 regions from honeybees collected at various time points from anthropogenic landforms as urban areas in Poland, UK, Spain, Greece, and Thailand. We have analysed microbial composition of honeybee intestine as well as fungi and pollens. We conclude that differences between samples were mainly influenced by the bacteria, plant pol...
The controlled formation of sequence specific DNA protein complexes is a fundamental feature of m... more The controlled formation of sequence specific DNA protein complexes is a fundamental feature of most genetic transactions. Studies of the impact of point mutations on the function of individual components, such as repressors, remains a key aspect of many Systems and Synthetic Biology research programmes. One of the most dramatic systemic consequences of a point mutation is exhibited by the monomeric DNA methyltransferases M.HhaI and M.EcoRII, where substitution of a single, catalytic cysteine by either glycine or alanine, creates a lethal gain of function phenotype.In vivo expression of these point mutants promotes the deposition of high affinity nucleoprotein complexes that arrest replication in vivo, causing cell death. Interestingly, it appears that a systemic response to expression of these mutant enzymes is dramatically enhanced when they are expressed as synthetic dimers. A previously unreported form of “mutational rescue” appears to be triggered as a result of networked cross...
Nucleic Acids Research
The honey bee genome has the capacity to produce three phenotypically distinct organisms (two dip... more The honey bee genome has the capacity to produce three phenotypically distinct organisms (two diploid female castes: queen and worker, and a haploid male drone). Previous studies have implicated metabolic flux acting via epigenetic regulation in directing nutrition-driven phenotypic plasticity in the honey bee. However, the cis-acting DNA regulatory elements that establish tissue and polyphenism -specific epigenomes and gene expression programmes, remain unclear. Using a high resolution multiomic approach including assay for transposase-accessible chromatin by sequencing (ATAC-seq), RNA-seq and ChIP-seq, we produce the first genome-wide maps of the regulatory landscape across all three adult honey bee phenotypes identifying > 5000 regulatory regions in queen, 7500 in worker and 6500 in drone, with the vast majority of these sites located within intronic regions. These regions are defined by positive enrichment of H3K27ac and depletion of H3K4me3 and show a positive correlation wi...
Blood, 2007
The ability to impose exogenous targeted epigenetic changes in the genome represents an attractiv... more The ability to impose exogenous targeted epigenetic changes in the genome represents an attractive goal in gene therapy for the heritable repression of target genes, while potentially enabling the generation and subsequent study of the downstream effects of de novo epigenetic events, which are known to occur in disease. Here we demonstrate the ability of zinc-finger peptides to deliver DNA cytosine methylation in vivo to a genomic target promoter, when expressed as fusions with a mutant prokaryotic DNA cytosine methyltransferase enzyme, thus mimicking cellular de novo methylation events. We show for the first time targeted gene silencing in response to directed DNA cytosine methylation via initiation of a repressive chromatin signature at a targeted genomic locus, characterised by elevation of histone H3K9Me2 and reduction of H3K4Me3 levels at that region. This transcriptional repression is maintained in the absence of sustained targeted methyltransferase action, confirming epigenet...
Pathogens, 2021
European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiom... more European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of the 16S rRNA from bacteria and the internally transcribed spacer (ITS) regions from fungi and plants allow identification of the metabiome. These methods provide a tool for monitoring otherwise uncultured microbes isolated from the gut of the honeybees. They also help monitor the composition of the gut fungi and, intriguingly, pollen collected by the insect. Here, we present data from amplicon sequencing of the 16S rRNA from bacteria and ITS2 regions from fungi and plants derived from honeybees collected at various time points from anthropogenic landscapes such as urban areas in Poland, UK, Spain, Greece, and Thailand. We have analysed microbial content of honeybee intestine as well as fungi and pollens. ...
PloS one, 2018
Proper bioelement content is crucial for the health and wellness of all organisms, including hone... more Proper bioelement content is crucial for the health and wellness of all organisms, including honeybees. However, the situation is more complicated in these important pollinators due to the fact that they change their physiology during winter in order to survive the relatively harsh climatic conditions. Additionally, honeybees are susceptible to many diseases such as nosemosis, which during winter can depopulate an entire colony. Here we show that summer bees have a markedly higher content of important bioelements such as: Al, Cu, P, V, (physiologically essential); Ca, K, Mg, (electrolytic); Cr, Se, Zn, (enzymatic); As, Hg, (toxic). In contrast, a markedly higher content of: Fe (physiologically essential); Mn, Ni, (enzymatic); Cd (exclusively toxic) were present in winter bees. Importantly, N. ceranae infection resulted in an increased honeybee bioelement content of: S, Sr (physiologically essential) and Pb (exclusively toxic), whereas the Nosema-free worker-bees had higher amounts o...
Molecular human reproduction, Jan 23, 2015
Human parturition is associated with many pro-inflammatory mediators which are regulated by the n... more Human parturition is associated with many pro-inflammatory mediators which are regulated by the nuclear factor-kappaB (NF-κB) family of transcription factors. In the present study, we employed a ChIP-on-chip approach to define genomic loci within chromatin of PHM1-31 myometrial cells that were occupied by RelA-containing NF-κB dimers in response to a TNF stimulation of 1 h. In TNF-stimulated PHM1-31 cells, anti-RelA serum enriched 13 300 chromatin regions; importantly, 11 110 regions were also enriched by anti-RelA antibodies in the absence of TNF. DNA sequences in these regions, from both unstimulated or TNF-stimulated PHM1-31 cultures, were associated with genic regions including IκBα, COX-2, IL6RN, Jun and KCNMB3. TNF-induced binding events at a consensus κB site numbered 1667; these were represented by 112 different instances of the consensus κB motif. Of the 1667 consensus κB motif occurrences, 770 (46.2%) were identified within intronic regions. In unstimulated PHM1-31 cells, ...
Journal of Molecular Biology, 2009
Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway... more Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the
RNA, 2015
Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-bi... more Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullinat...
Genome research, Oct 1, 2018
The capacity of the honey bee to produce three phenotypically distinct organisms (two female cast... more The capacity of the honey bee to produce three phenotypically distinct organisms (two female castes; queens and sterile workers, and haploid male drones) from one genotype represents one of the most remarkable examples of developmental plasticity in any phylum. The queen-worker morphological and reproductive divide is environmentally controlled during post-embryonic development by differential feeding. Previous studies implicated metabolic flux acting via epigenetic regulation, in particular DNA methylation and microRNAs, in establishing distinct patterns of gene expression underlying caste-specific developmental trajectories. We produce the first genome-wide maps of chromatin structure in the honey bee at a key larval stage in which developmental canalization into queen or worker is virtually irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac, and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key ...
Nucleic Acids Research , 2022
The honey bee genome has the capacity to produce three phenotypically distinct organisms (two dip... more The honey bee genome has the capacity to produce three phenotypically distinct organisms (two diploid female castes: queen and worker, and a haploid male drone). Previous studies have implicated metabolic flux acting via epigenetic regulation in directing nutrition-driven phenotypic plasticity in the honey bee. However, the cis-acting DNA regulatory elements that establish tissue and polyphenism-specific epigenomes and gene expression programmes, remain unclear. Using a high resolution multiomic approach including assay for transposase-accessible chromatin by sequencing (ATAC-seq), RNA-seq and ChIP-seq, we produce the first genome-wide maps of the regulatory landscape across all three adult honey bee phenotypes identifying > 5000 regulatory regions in queen, 7500 in worker and 6500 in drone, with the vast majority of these sites located within intronic regions. These regions are defined by positive enrichment of H3K27ac and depletion of H3K4me3 and show a positive correlation with gene expression. Using ATAC-seq footprinting we determine queen, worker and dronespecific transcription factor occupancy and uncover novel phenotype-specific regulatory networks identifying two key nuclear receptors that have previously been implicated in caste-determination and adult behavioural maturation in honey bees; ecdysone receptor and ultraspiracle. Collectively, this study provides novel insights into key gene regulatory networks that are associated with these distinct polyphenisms in the honey bee.
Proceedings of the National Academy of Sciences, 2019
Significance Our results show that the experience of being alone has immediate consequences on br... more Significance Our results show that the experience of being alone has immediate consequences on brain gene activity. Clearly this is important for the human context, where loneliness (i.e., perceived social isolation) is a risk factor for psychological and neurodegenerative disorders. As the response occurs in brain areas involved in higher-order cognition and perception, these changes in gene activity may influence the ongoing processing of experience. Prior studies in humans have measured effects of social isolation in circulating leukocytes, but not in brain, and studies in mammalian models have typically focused on effects of much longer isolation periods (weeks or more). The results also bear on interpretation of animal experiments where short-term isolation is used to establish the baseline reference condition.
Scientific Reports
In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the h... more In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7–4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern s...
The capacity of the honey bee to produce three phenotypically distinct organisms (two female cast... more The capacity of the honey bee to produce three phenotypically distinct organisms (two female castes; queens and sterile workers, and haploid male drones) from one genotype represents one of the most remarkable examples of developmental plasticity in any phylum. The queen–worker morphological and reproductive divide is environmentally controlled during post-embryonic development by differential feeding. Previous studies implicated metabolic flux acting via epigenetic regulation , in particular DNA methylation and microRNAs, in establishing distinct patterns of gene expression underlying caste-specific developmental trajectories. We produce the first genome-wide maps of chromatin structure in the honey bee at a key larval stage in which developmental canalization into queen or worker is virtually irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac, and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key chromatin modification, with caste-specific regions of intronic H3K27ac directing the worker caste. These regions may harbor the first examples of caste-specific enhancer elements in the honey bee. Our results demonstrate a key role for chromatin modifications in the establishment and maintenance of caste-specific transcriptional programs in the honey bee. We show that at 96 h of larval growth, the queen-specific chromatin pattern is already established, whereas the worker determination is not, thus providing experimental support for the perceived timing of this critical point in developmental heterochrony in two types of honey bee females. In a broader context, our study provides novel data on environmentally regulated organismal plasticity and the molecular foundation of the evolutionary origins of eusociality.