Ari Molofsky | UCSF - Academia.edu (original) (raw)
Papers by Ari Molofsky
Blood, Jan 4, 2014
Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 i... more Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 is being tested as therapy for some autoimmune diseases. However, patients receiving IL-2 treatment also experience eosinophilia due to an unknown mechanism. Here, we show that patients receiving low-dose IL-2 have elevated levels of serum IL-5, and this correlates with their degree of eosinophilia. In mice, low-dose IL-2-anti-IL-2 antibody complexes drove group 2 innate lymphoid cells (ILC2) to produce IL-5 and proliferate. Using genetic approaches in mice, we demonstrate that activation of ILC2 was responsible for the eosinophilia observed with IL-2 therapy. These observations reveal a novel cellular network that is activated during IL-2 treatment. A better understanding of the cross talk between these cell populations may lead to more effective targeting of IL-2 to treat autoimmune disease.
Molecular Biology of the Cell, 2003
Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear ... more Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear migration is known to require the perinuclear protein Klarsicht, but the function of Klarsicht has been obscure. Here, we show that Klarsicht is required for connecting the microtubule organizing center (MTOC) to the nucleus. In addition, in a genetic screen for klarsicht-interacting genes, we identified Lam Dm(0), which encodes nuclear lamin. We find that, like Klarsicht, lamin is required for photoreceptor nuclear migration and for nuclear attachment to the MTOC. Moreover, perinuclear localization of Klarsicht requires lamin. We propose that nuclear migration requires linkage of the MTOC to the nucleus through an interaction between microtubules, Klarsicht, and lamin. The Klarsicht/lamin interaction provides a framework for understanding the mechanistic basis of human laminopathies.
Immunity, Jan 16, 2015
Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described a... more Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies.
Immunity, Jan 15, 2015
Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by h... more Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by helminth infection but also sustain metabolic homeostasis in adipose tissue and contribute to tissue repair during injury. Here we show that interleukin-33 (IL-33) mediates activation of ILC2s and Treg cells in resting adipose tissue, but also after helminth infection or treatment with IL-2. Unexpectedly, ILC2-intrinsic IL-33 activation was required for Treg cell accumulation in vivo and was independent of ILC2 type 2 cytokines but partially dependent on direct co-stimulatory interactions via ICOSL-ICOS. IFN-γ inhibited ILC2 activation and Treg cell accumulation by IL-33 in infected tissue, as well as adipose tissue, where repression increased with aging and high-fat diet-induced obesity. IL-33 and ILC2s are central mediators of type 2 immune responses that promote tissue and metabolic homeostasis, and IFN-γ suppresses this pathway, likely to promote inflammatory responses and divert meta...
Legionella, 2006
... Michele S. Swanson, Brenda G. Byrne, Natalie W. Whitfield, and Ari B. Molofsky Department of M... more ... Michele S. Swanson, Brenda G. Byrne, Natalie W. Whitfield, and Ari B. Molofsky Department of Microbiology and Im-munology, University of Michigan ... 31. Tateda, K., TA Moore, JC Deng, MWNewstead, X. Zeng, A. Matsukawa, MS Swanson, K. Yamaguchi, and TJ Standi-ford. ...
Science, 2011
Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternat... more Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4-expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into
Cell, 2015
Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5... more Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2- and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα(+) APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PAPERCLIP:
Science, 2011
Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternat... more Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4-expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into adipose tissue by an integrin-dependent process and reconstitute AAMs through an IL-4- or IL-13-dependent process. Mice fed a high-fat diet develop increased body fat, impaired glucose tolerance, and insulin resistance in the absence of eosinophils, and helminth-induced adipose tissue eosinophilia enhances glucose tolerance. Our results suggest that eosinophils play an unexpected role in metabolic homeostasis through maintenance of adipose AAMs.
Nature, 2013
Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood ... more Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, 1 and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins, mediate eosinophil development and survival, 2 and tissue recruitment, 3 respectively, the processes underlying the basal regulation of these signals remain unknown. Here, we show that serum IL-5 is maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, 4 ILC2 co-express IL-5 and IL-13, which is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide (VIP) also stimulates ILC2 through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 regulate basal eosinophilopoiesis and tissue eosinophil
Molecular Microbiology, 2003
Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legion... more Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires' Disease in susceptible hosts. When nutrients become limiting, a stringent-like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the twocomponent system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly conserved RNA binding protein CsrA is a global repressor of L. pneumophila transmission phenotypes and an essential activator of intracellular replication. By analysing csrA expression and the phenotypes of csrA single and double mutants and a strain that expresses csrA constitutively, we demonstrate that, during replication in broth, CsrA represses every post-exponential phase phenotype examined, including cell shape shortening, motility, pigmentation, stress resistance, sodium sensitivity, cytotoxicity and efficient macrophage infection. At the transition to the post-exponential phase, LetA/S relieves CsrA repression to induce transmission phenotypes by both FliA-dependent and -independent pathways. For L. pneumophila to avoid lysosomal degradation in macrophages, CsrA repression must be relieved by LetA/S before phagocytosis; conversely, before intracellular bacteria can replicate, CsrA repression must be restored. The reciprocal regulation of replication and transmission exemplified by CsrA likely enhances the fitness of microbes faced with fluctuating environments.
Molecular Microbiology, 2004
When confronted by disparate environments, microbes routinely alter their physiology to tolerate ... more When confronted by disparate environments, microbes routinely alter their physiology to tolerate or exploit local conditions. But some circumstances require more drastic remodelling of the bacterial cell, as sporulation by the Bacillus and Streptomyces species of soil bacteria vividly illustrates. Cellular differentiation is also crucial for pathogens, the challenge for which is to colonize one host, then be transmitted to the next. Using the Gram-negative Legionella pneumophila as a model intracellular pathogen, we describe how biogenesis of the replication vacuole is determined by the developmental state of the bacterium. Subsequently, when replicating bacteria have exhausted the nutrient supply, the pathogens couple their conversion to stationary phase physiology with expression of traits that promote transmission to a new host. The cellular differentiation of L. pneumophila is co-ordinated by a regulatory circuit that integrates several elements that are broadly conserved in the microbial world. The alarmone (p)ppGpp promotes transcription directed by the alternative sigma factors RpoS, FliA and, probably, RpoN, and also post-transcriptional control mediated by a two-component regulatory system, LetA/S (GacA/S), and an mRNA-binding protein, CsrA (RsmA). By applying knowledge of microbial differentiation in combination with tools to screen the complete genomes of pathogens, experiments can be designed to identify two distinct classes of virulence traits: factors that promote replication and those dedicated to transmission.
Journal of Experimental Medicine, 2006
Journal of Experimental Medicine, 2013
Further, IL-33, a cytokine previously shown to promote cytokine production by ILC2s, leads to rap... more Further, IL-33, a cytokine previously shown to promote cytokine production by ILC2s, leads to rapid ILC2-dependent increases in VAT eosinophils and AAMs. Thus, ILC2s are resident in VAT and promote eosinophils and AAM implicated in metabolic homeostasis, and this axis is enhanced during Th2-associated immune stimulation.
Infection and Immunity, 2005
Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrie... more Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA ( 28 ). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FliA to avoid lysosomal degradation in murine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.
Immunity, 2014
Chitin, a polysaccharide constituent of many allergens and parasites, initiates innate type 2 lun... more Chitin, a polysaccharide constituent of many allergens and parasites, initiates innate type 2 lung inflammation through incompletely defined pathways. We show that inhaled chitin induced expression of three epithelial cytokines, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), which nonredundantly activated resident innate lymphoid type 2 cells (ILC2s) to express IL-5 and IL-13 necessary for accumulation of eosinophils and alternatively activated macrophages (AAMs). In the absence of all three epithelial cytokines, ILC2s normally populated the lung but failed to increase IL-5 and IL-13. Although eosinophils and AAMs were attenuated, neutrophil influx remained normal without these epithelial cytokines. Genetic ablation of ILC2s, however, enhanced IL-1β, TNFα, and IL-23 expression, increased activation of IL-17A-producing γδ T cells, and prolonged neutrophil influx. Thus, chitin elicited patterns of innate cytokines that targeted distinct populations of resident lymphoid cells, revealing divergent but interacting pathways underlying the tissue accumulation of specific types of inflammatory myeloid cells.
Critical Care Medicine, 2012
We report two simultaneous cases of Staphylococcus aureus sepsis initially consistent with and di... more We report two simultaneous cases of Staphylococcus aureus sepsis initially consistent with and diagnosed as transfusion-related acute lung injury. The sepsis in both cases resulted from transfusion of two split products from a single contaminated plateletpheresis unit. In each case, the platelets were given along with numerous other blood products during posterior spine surgery. The discussion includes presentation, clinical course, diagnosis, and similarities between sepsis and transfusion-related acute lung injury. The cases and discussion highlight the importance of considering sepsis as part of the differential for any patient believed to have transfusion-related acute lung injury with clinical features of sepsis. Data were collected from the patients' electronic medical records and the hospital laboratory medicine database. Our cases highlight the importance of vigilant investigation in patients suspected of transfusion-related acute lung injury, as septic transfusions are easily missed and may mimic or coexist with transfusion-related acute lung injury. Sepsis should be strongly considered whenever clinical features such as hypotension, leucopenia, and fever are noted in patients with suspected transfusion-related acute lung injury. In comparison to patients receiving red blood cells or plasma, platelet transfusion recipients are at a greater risk for sepsis from a contaminated unit. Patients developing sepsis from a contaminated blood product may meet the clinical definition of transfusion-related acute lung injury. In such cases, if the clinical syndrome is attributed solely to transfusion-related acute lung injury and bacterial sepsis is not suspected, the correct diagnosis may be missed or delayed. Consequently, appropriate treatment for sepsis would also be delayed or not provided and likely result in increased morbidity and mortality.
Autophagy, 2005
By law in the evolutionary jungle, any host defense mechanism that efficiently kills microbes als... more By law in the evolutionary jungle, any host defense mechanism that efficiently kills microbes also exerts a strong selective pressure for tolerant variants to emerge. As a consequence, pathogens can be exploited as powerful tools to examine host defense mechanisms. Recent studies of the confrontation between macrophages and the opportunistic pathogen Legionella pneumophila have revealed a regulatory mechanism that may link autophagy to pyroptosis, a type of programmed cell death. Building from the extensive literature on autophagy, cell death, and innate immunity, we propose here a testable model in which the NOD-LRR protein Naip5 dictates whether murine macrophages elevate autophagy or pyroptosis as a barrier to infection.
Blood, Jan 4, 2014
Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 i... more Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 is being tested as therapy for some autoimmune diseases. However, patients receiving IL-2 treatment also experience eosinophilia due to an unknown mechanism. Here, we show that patients receiving low-dose IL-2 have elevated levels of serum IL-5, and this correlates with their degree of eosinophilia. In mice, low-dose IL-2-anti-IL-2 antibody complexes drove group 2 innate lymphoid cells (ILC2) to produce IL-5 and proliferate. Using genetic approaches in mice, we demonstrate that activation of ILC2 was responsible for the eosinophilia observed with IL-2 therapy. These observations reveal a novel cellular network that is activated during IL-2 treatment. A better understanding of the cross talk between these cell populations may lead to more effective targeting of IL-2 to treat autoimmune disease.
Blood, Jan 4, 2014
Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 i... more Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 is being tested as therapy for some autoimmune diseases. However, patients receiving IL-2 treatment also experience eosinophilia due to an unknown mechanism. Here, we show that patients receiving low-dose IL-2 have elevated levels of serum IL-5, and this correlates with their degree of eosinophilia. In mice, low-dose IL-2-anti-IL-2 antibody complexes drove group 2 innate lymphoid cells (ILC2) to produce IL-5 and proliferate. Using genetic approaches in mice, we demonstrate that activation of ILC2 was responsible for the eosinophilia observed with IL-2 therapy. These observations reveal a novel cellular network that is activated during IL-2 treatment. A better understanding of the cross talk between these cell populations may lead to more effective targeting of IL-2 to treat autoimmune disease.
Molecular Biology of the Cell, 2003
Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear ... more Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear migration is known to require the perinuclear protein Klarsicht, but the function of Klarsicht has been obscure. Here, we show that Klarsicht is required for connecting the microtubule organizing center (MTOC) to the nucleus. In addition, in a genetic screen for klarsicht-interacting genes, we identified Lam Dm(0), which encodes nuclear lamin. We find that, like Klarsicht, lamin is required for photoreceptor nuclear migration and for nuclear attachment to the MTOC. Moreover, perinuclear localization of Klarsicht requires lamin. We propose that nuclear migration requires linkage of the MTOC to the nucleus through an interaction between microtubules, Klarsicht, and lamin. The Klarsicht/lamin interaction provides a framework for understanding the mechanistic basis of human laminopathies.
Immunity, Jan 16, 2015
Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described a... more Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies.
Immunity, Jan 15, 2015
Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by h... more Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by helminth infection but also sustain metabolic homeostasis in adipose tissue and contribute to tissue repair during injury. Here we show that interleukin-33 (IL-33) mediates activation of ILC2s and Treg cells in resting adipose tissue, but also after helminth infection or treatment with IL-2. Unexpectedly, ILC2-intrinsic IL-33 activation was required for Treg cell accumulation in vivo and was independent of ILC2 type 2 cytokines but partially dependent on direct co-stimulatory interactions via ICOSL-ICOS. IFN-γ inhibited ILC2 activation and Treg cell accumulation by IL-33 in infected tissue, as well as adipose tissue, where repression increased with aging and high-fat diet-induced obesity. IL-33 and ILC2s are central mediators of type 2 immune responses that promote tissue and metabolic homeostasis, and IFN-γ suppresses this pathway, likely to promote inflammatory responses and divert meta...
Legionella, 2006
... Michele S. Swanson, Brenda G. Byrne, Natalie W. Whitfield, and Ari B. Molofsky Department of M... more ... Michele S. Swanson, Brenda G. Byrne, Natalie W. Whitfield, and Ari B. Molofsky Department of Microbiology and Im-munology, University of Michigan ... 31. Tateda, K., TA Moore, JC Deng, MWNewstead, X. Zeng, A. Matsukawa, MS Swanson, K. Yamaguchi, and TJ Standi-ford. ...
Science, 2011
Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternat... more Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4-expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into
Cell, 2015
Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5... more Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2- and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα(+) APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PAPERCLIP:
Science, 2011
Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternat... more Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4-expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into adipose tissue by an integrin-dependent process and reconstitute AAMs through an IL-4- or IL-13-dependent process. Mice fed a high-fat diet develop increased body fat, impaired glucose tolerance, and insulin resistance in the absence of eosinophils, and helminth-induced adipose tissue eosinophilia enhances glucose tolerance. Our results suggest that eosinophils play an unexpected role in metabolic homeostasis through maintenance of adipose AAMs.
Nature, 2013
Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood ... more Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, 1 and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins, mediate eosinophil development and survival, 2 and tissue recruitment, 3 respectively, the processes underlying the basal regulation of these signals remain unknown. Here, we show that serum IL-5 is maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, 4 ILC2 co-express IL-5 and IL-13, which is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide (VIP) also stimulates ILC2 through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 regulate basal eosinophilopoiesis and tissue eosinophil
Molecular Microbiology, 2003
Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legion... more Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires' Disease in susceptible hosts. When nutrients become limiting, a stringent-like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the twocomponent system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly conserved RNA binding protein CsrA is a global repressor of L. pneumophila transmission phenotypes and an essential activator of intracellular replication. By analysing csrA expression and the phenotypes of csrA single and double mutants and a strain that expresses csrA constitutively, we demonstrate that, during replication in broth, CsrA represses every post-exponential phase phenotype examined, including cell shape shortening, motility, pigmentation, stress resistance, sodium sensitivity, cytotoxicity and efficient macrophage infection. At the transition to the post-exponential phase, LetA/S relieves CsrA repression to induce transmission phenotypes by both FliA-dependent and -independent pathways. For L. pneumophila to avoid lysosomal degradation in macrophages, CsrA repression must be relieved by LetA/S before phagocytosis; conversely, before intracellular bacteria can replicate, CsrA repression must be restored. The reciprocal regulation of replication and transmission exemplified by CsrA likely enhances the fitness of microbes faced with fluctuating environments.
Molecular Microbiology, 2004
When confronted by disparate environments, microbes routinely alter their physiology to tolerate ... more When confronted by disparate environments, microbes routinely alter their physiology to tolerate or exploit local conditions. But some circumstances require more drastic remodelling of the bacterial cell, as sporulation by the Bacillus and Streptomyces species of soil bacteria vividly illustrates. Cellular differentiation is also crucial for pathogens, the challenge for which is to colonize one host, then be transmitted to the next. Using the Gram-negative Legionella pneumophila as a model intracellular pathogen, we describe how biogenesis of the replication vacuole is determined by the developmental state of the bacterium. Subsequently, when replicating bacteria have exhausted the nutrient supply, the pathogens couple their conversion to stationary phase physiology with expression of traits that promote transmission to a new host. The cellular differentiation of L. pneumophila is co-ordinated by a regulatory circuit that integrates several elements that are broadly conserved in the microbial world. The alarmone (p)ppGpp promotes transcription directed by the alternative sigma factors RpoS, FliA and, probably, RpoN, and also post-transcriptional control mediated by a two-component regulatory system, LetA/S (GacA/S), and an mRNA-binding protein, CsrA (RsmA). By applying knowledge of microbial differentiation in combination with tools to screen the complete genomes of pathogens, experiments can be designed to identify two distinct classes of virulence traits: factors that promote replication and those dedicated to transmission.
Journal of Experimental Medicine, 2006
Journal of Experimental Medicine, 2013
Further, IL-33, a cytokine previously shown to promote cytokine production by ILC2s, leads to rap... more Further, IL-33, a cytokine previously shown to promote cytokine production by ILC2s, leads to rapid ILC2-dependent increases in VAT eosinophils and AAMs. Thus, ILC2s are resident in VAT and promote eosinophils and AAM implicated in metabolic homeostasis, and this axis is enhanced during Th2-associated immune stimulation.
Infection and Immunity, 2005
Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrie... more Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA ( 28 ). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FliA to avoid lysosomal degradation in murine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.
Immunity, 2014
Chitin, a polysaccharide constituent of many allergens and parasites, initiates innate type 2 lun... more Chitin, a polysaccharide constituent of many allergens and parasites, initiates innate type 2 lung inflammation through incompletely defined pathways. We show that inhaled chitin induced expression of three epithelial cytokines, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), which nonredundantly activated resident innate lymphoid type 2 cells (ILC2s) to express IL-5 and IL-13 necessary for accumulation of eosinophils and alternatively activated macrophages (AAMs). In the absence of all three epithelial cytokines, ILC2s normally populated the lung but failed to increase IL-5 and IL-13. Although eosinophils and AAMs were attenuated, neutrophil influx remained normal without these epithelial cytokines. Genetic ablation of ILC2s, however, enhanced IL-1β, TNFα, and IL-23 expression, increased activation of IL-17A-producing γδ T cells, and prolonged neutrophil influx. Thus, chitin elicited patterns of innate cytokines that targeted distinct populations of resident lymphoid cells, revealing divergent but interacting pathways underlying the tissue accumulation of specific types of inflammatory myeloid cells.
Critical Care Medicine, 2012
We report two simultaneous cases of Staphylococcus aureus sepsis initially consistent with and di... more We report two simultaneous cases of Staphylococcus aureus sepsis initially consistent with and diagnosed as transfusion-related acute lung injury. The sepsis in both cases resulted from transfusion of two split products from a single contaminated plateletpheresis unit. In each case, the platelets were given along with numerous other blood products during posterior spine surgery. The discussion includes presentation, clinical course, diagnosis, and similarities between sepsis and transfusion-related acute lung injury. The cases and discussion highlight the importance of considering sepsis as part of the differential for any patient believed to have transfusion-related acute lung injury with clinical features of sepsis. Data were collected from the patients' electronic medical records and the hospital laboratory medicine database. Our cases highlight the importance of vigilant investigation in patients suspected of transfusion-related acute lung injury, as septic transfusions are easily missed and may mimic or coexist with transfusion-related acute lung injury. Sepsis should be strongly considered whenever clinical features such as hypotension, leucopenia, and fever are noted in patients with suspected transfusion-related acute lung injury. In comparison to patients receiving red blood cells or plasma, platelet transfusion recipients are at a greater risk for sepsis from a contaminated unit. Patients developing sepsis from a contaminated blood product may meet the clinical definition of transfusion-related acute lung injury. In such cases, if the clinical syndrome is attributed solely to transfusion-related acute lung injury and bacterial sepsis is not suspected, the correct diagnosis may be missed or delayed. Consequently, appropriate treatment for sepsis would also be delayed or not provided and likely result in increased morbidity and mortality.
Autophagy, 2005
By law in the evolutionary jungle, any host defense mechanism that efficiently kills microbes als... more By law in the evolutionary jungle, any host defense mechanism that efficiently kills microbes also exerts a strong selective pressure for tolerant variants to emerge. As a consequence, pathogens can be exploited as powerful tools to examine host defense mechanisms. Recent studies of the confrontation between macrophages and the opportunistic pathogen Legionella pneumophila have revealed a regulatory mechanism that may link autophagy to pyroptosis, a type of programmed cell death. Building from the extensive literature on autophagy, cell death, and innate immunity, we propose here a testable model in which the NOD-LRR protein Naip5 dictates whether murine macrophages elevate autophagy or pyroptosis as a barrier to infection.
Blood, Jan 4, 2014
Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 i... more Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 is being tested as therapy for some autoimmune diseases. However, patients receiving IL-2 treatment also experience eosinophilia due to an unknown mechanism. Here, we show that patients receiving low-dose IL-2 have elevated levels of serum IL-5, and this correlates with their degree of eosinophilia. In mice, low-dose IL-2-anti-IL-2 antibody complexes drove group 2 innate lymphoid cells (ILC2) to produce IL-5 and proliferate. Using genetic approaches in mice, we demonstrate that activation of ILC2 was responsible for the eosinophilia observed with IL-2 therapy. These observations reveal a novel cellular network that is activated during IL-2 treatment. A better understanding of the cross talk between these cell populations may lead to more effective targeting of IL-2 to treat autoimmune disease.