Maharshi Shukla | Rochester Institute of Technology (original) (raw)
Uploads
Papers by Maharshi Shukla
Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering
Squeezing bubbles in a tapered microgap has proved to be effective for improving flow stability i... more Squeezing bubbles in a tapered microgap has proved to be effective for improving flow stability in flow boiling. A previous study from our research group has successfully demonstrated using tapered microgap for transforming pool boiling into a self-sustained flow boiling-like system for cooling CPU through thermosiphon. To overcome the imaging challenges with nucleating vapor bubbles, the present work investigates the squeezing behaviour of air-injected bubbles between a tapered microgap with taper angles of 5°, 10°, and 15°. The air bubbles are injected at a rate of 3 ml/min, 15ml/min, and 30 ml/min in a pool of water. The bubble squeezing is recorded at 2000fps using a Photron high-speed camera. The experimental analysis compares the displacement and velocity of the advancing and receding bubble interfaces. The analysis found that in certain test cases, multiple bubbles coalesced while exiting the tapered microgap. In all the test cases, the receding interface of the bubble slings...
International Journal of Heat and Mass Transfer, 2022
International Journal of Heat and Mass Transfer, 2021
As technology advances due to continuous research, devices are becoming more compact, efficient, ... more As technology advances due to continuous research, devices are becoming more compact, efficient, and powerful. Therefore, heat rejection from such devices becomes ever so critical to maximizing their potential. Compared to other heat extraction methods, boiling provides one of the highest heat transfer coefficients. The heat extraction due to the boiling process is limited to the Critical Heat Flux (CHF). At CHF, an insulating layer of escaping bubbles forms upon the surface to prevent boiling continuity. Subsequently, the surface temperature increases uncontrollably, leading to a system failure. Hence, the elevation of CHF is critical to boiling enhancement. Improvements to the heat transfer process can be made with either surface manipulation or liquid manipulation. Based on previous studies, it is found that the removal of bubbles from the heater surface is critical to enhancing performance. Therefore, it is hypothesized that if a bubble can be encouraged to reach liquid-gas the interface quickly, gains in the boiling performance can be achieved. Due to the vapor bubble's movement in liquid bulk, it becomes critical to understand the influence of liquid height on pool boiling for enhancement. While pool boiling enhancement using heating surface modification is extensively studied and documented, there is a research gap between understanding the effect of liquid height at high heat fluxes. Thus, this study tries to evaluate the influence of liquid height on pool boiling performance at higher heat fluxes and identify the underlying bubble movement mechanism. It is observed that as CHF increases with liquid height. Moreover, it is observed that bubble movement is more effortless at low liquid height resulting in higher HTC. On the other hand, larger liquid height provides improved rewetting of the surface resulting in higher CHF. Upon analysis of high-speed recording of the escaping bubbles, it was observed that the maximum heat transfer coefficient is observed when the liquid height is about four times the height of the departing bubble diameter.
Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering
Squeezing bubbles in a tapered microgap has proved to be effective for improving flow stability i... more Squeezing bubbles in a tapered microgap has proved to be effective for improving flow stability in flow boiling. A previous study from our research group has successfully demonstrated using tapered microgap for transforming pool boiling into a self-sustained flow boiling-like system for cooling CPU through thermosiphon. To overcome the imaging challenges with nucleating vapor bubbles, the present work investigates the squeezing behaviour of air-injected bubbles between a tapered microgap with taper angles of 5°, 10°, and 15°. The air bubbles are injected at a rate of 3 ml/min, 15ml/min, and 30 ml/min in a pool of water. The bubble squeezing is recorded at 2000fps using a Photron high-speed camera. The experimental analysis compares the displacement and velocity of the advancing and receding bubble interfaces. The analysis found that in certain test cases, multiple bubbles coalesced while exiting the tapered microgap. In all the test cases, the receding interface of the bubble slings...
International Journal of Heat and Mass Transfer, 2022
International Journal of Heat and Mass Transfer, 2021
As technology advances due to continuous research, devices are becoming more compact, efficient, ... more As technology advances due to continuous research, devices are becoming more compact, efficient, and powerful. Therefore, heat rejection from such devices becomes ever so critical to maximizing their potential. Compared to other heat extraction methods, boiling provides one of the highest heat transfer coefficients. The heat extraction due to the boiling process is limited to the Critical Heat Flux (CHF). At CHF, an insulating layer of escaping bubbles forms upon the surface to prevent boiling continuity. Subsequently, the surface temperature increases uncontrollably, leading to a system failure. Hence, the elevation of CHF is critical to boiling enhancement. Improvements to the heat transfer process can be made with either surface manipulation or liquid manipulation. Based on previous studies, it is found that the removal of bubbles from the heater surface is critical to enhancing performance. Therefore, it is hypothesized that if a bubble can be encouraged to reach liquid-gas the interface quickly, gains in the boiling performance can be achieved. Due to the vapor bubble's movement in liquid bulk, it becomes critical to understand the influence of liquid height on pool boiling for enhancement. While pool boiling enhancement using heating surface modification is extensively studied and documented, there is a research gap between understanding the effect of liquid height at high heat fluxes. Thus, this study tries to evaluate the influence of liquid height on pool boiling performance at higher heat fluxes and identify the underlying bubble movement mechanism. It is observed that as CHF increases with liquid height. Moreover, it is observed that bubble movement is more effortless at low liquid height resulting in higher HTC. On the other hand, larger liquid height provides improved rewetting of the surface resulting in higher CHF. Upon analysis of high-speed recording of the escaping bubbles, it was observed that the maximum heat transfer coefficient is observed when the liquid height is about four times the height of the departing bubble diameter.