Asith Abeysinghe | RMIT University (original) (raw)
Papers by Asith Abeysinghe
Vibroengineering PROCEDIA
Seats are one of the most significant components of vehicles. Customer's expectations for the com... more Seats are one of the most significant components of vehicles. Customer's expectations for the comfort in vehicle seats rise continuously. Designing of automobile seats has always been a challenge for engineers as design parameters for automobile seats are complex. When it comes to the design of automobile seats, three design objectives, namely comfort, safety and health need to be fulfilled simultaneously. Vibration analysis plays a major role in engineering including the area of design for automobile comfort. Human structure, as a mechanical system, is immensely complex and the mechanical properties of human body readily undergo change. In addition, the vibration can initiate the development of pressure ulcer and other long-term diseases. Comfort measurement is challenging because of such factors as user subjectivity, seat geometry, occupant anthropometry and amount of time spent sitting. The purpose of this study is to identify the most significant parameters that make vibration in the vehicle seat which reduce passenger comfort and to identify the design parameters that can impact on appropriate seat design. Suspension systems, seat cushion and sitting postures are some of the vital parameters that have huge impacts on comfort analysis. This review could help in design of seat cushions with appropriate material properties and in analysing the comfort levels of human body to reduce the vibration transmissibility at the critical frequency bands.
The Journal of the Acoustical Society of America
Fault identification using the emitted mechanical noise is becoming an attractive field of resear... more Fault identification using the emitted mechanical noise is becoming an attractive field of research in a variety of industries. It is essential to rank acoustic feature integration functions on their efficiency to classify different types of sound for conducting a fault diagnosis. The Mel frequency cepstral coefficient (MFCC) method was used to obtain various acoustic feature sets in the current study. MFCCs represent the audio signal power spectrum and capture the timbral information of sounds. The objective of this study is to introduce a method for the selection of statistical indicators to integrate the MFCC feature sets. Two purpose-built audio datasets for squeak and rattle were created for the study. Data were collected experimentally to investigate the feature sets of 256 recordings from 8 different rattle classes and 144 recordings from 12 different squeak classes. The support vector machine method was used to evaluate the classifier accuracy with individual feature sets. The outcome of this study shows the best performing statistical feature sets for the squeak and rattle audio datasets. The method discussed in this pilot study is to be adapted to the development of a vehicle faulty sound recognition algorithm. V
2016 Moratuwa Engineering Research Conference (MERCon), 2016
Vibroengineering PROCEDIA, 2019
Seats are one of the most significant components of vehicles. Customer's expectations for the com... more Seats are one of the most significant components of vehicles. Customer's expectations for the comfort in vehicle seats rise continuously. Designing of automobile seats has always been a challenge for engineers as design parameters for automobile seats are complex. When it comes to the design of automobile seats, three design objectives, namely comfort, safety and health need to be fulfilled simultaneously. Vibration analysis plays a major role in engineering including the area of design for automobile comfort. Human structure, as a mechanical system, is immensely complex and the mechanical properties of human body readily undergo change. In addition, the vibration can initiate the development of pressure ulcer and other long-term diseases. Comfort measurement is challenging because of such factors as user subjectivity, seat geometry, occupant anthropometry and amount of time spent sitting. The purpose of this study is to identify the most significant parameters that make vibration in the vehicle seat which reduce passenger comfort and to identify the design parameters that can impact on appropriate seat design. Suspension systems, seat cushion and sitting postures are some of the vital parameters that have huge impacts on comfort analysis. This review could help in design of seat cushions with appropriate material properties and in analysing the comfort levels of human body to reduce the vibration transmissibility at the critical frequency bands.
Vibroengineering PROCEDIA
Seats are one of the most significant components of vehicles. Customer's expectations for the com... more Seats are one of the most significant components of vehicles. Customer's expectations for the comfort in vehicle seats rise continuously. Designing of automobile seats has always been a challenge for engineers as design parameters for automobile seats are complex. When it comes to the design of automobile seats, three design objectives, namely comfort, safety and health need to be fulfilled simultaneously. Vibration analysis plays a major role in engineering including the area of design for automobile comfort. Human structure, as a mechanical system, is immensely complex and the mechanical properties of human body readily undergo change. In addition, the vibration can initiate the development of pressure ulcer and other long-term diseases. Comfort measurement is challenging because of such factors as user subjectivity, seat geometry, occupant anthropometry and amount of time spent sitting. The purpose of this study is to identify the most significant parameters that make vibration in the vehicle seat which reduce passenger comfort and to identify the design parameters that can impact on appropriate seat design. Suspension systems, seat cushion and sitting postures are some of the vital parameters that have huge impacts on comfort analysis. This review could help in design of seat cushions with appropriate material properties and in analysing the comfort levels of human body to reduce the vibration transmissibility at the critical frequency bands.
The Journal of the Acoustical Society of America
Fault identification using the emitted mechanical noise is becoming an attractive field of resear... more Fault identification using the emitted mechanical noise is becoming an attractive field of research in a variety of industries. It is essential to rank acoustic feature integration functions on their efficiency to classify different types of sound for conducting a fault diagnosis. The Mel frequency cepstral coefficient (MFCC) method was used to obtain various acoustic feature sets in the current study. MFCCs represent the audio signal power spectrum and capture the timbral information of sounds. The objective of this study is to introduce a method for the selection of statistical indicators to integrate the MFCC feature sets. Two purpose-built audio datasets for squeak and rattle were created for the study. Data were collected experimentally to investigate the feature sets of 256 recordings from 8 different rattle classes and 144 recordings from 12 different squeak classes. The support vector machine method was used to evaluate the classifier accuracy with individual feature sets. The outcome of this study shows the best performing statistical feature sets for the squeak and rattle audio datasets. The method discussed in this pilot study is to be adapted to the development of a vehicle faulty sound recognition algorithm. V
2016 Moratuwa Engineering Research Conference (MERCon), 2016
Vibroengineering PROCEDIA, 2019
Seats are one of the most significant components of vehicles. Customer's expectations for the com... more Seats are one of the most significant components of vehicles. Customer's expectations for the comfort in vehicle seats rise continuously. Designing of automobile seats has always been a challenge for engineers as design parameters for automobile seats are complex. When it comes to the design of automobile seats, three design objectives, namely comfort, safety and health need to be fulfilled simultaneously. Vibration analysis plays a major role in engineering including the area of design for automobile comfort. Human structure, as a mechanical system, is immensely complex and the mechanical properties of human body readily undergo change. In addition, the vibration can initiate the development of pressure ulcer and other long-term diseases. Comfort measurement is challenging because of such factors as user subjectivity, seat geometry, occupant anthropometry and amount of time spent sitting. The purpose of this study is to identify the most significant parameters that make vibration in the vehicle seat which reduce passenger comfort and to identify the design parameters that can impact on appropriate seat design. Suspension systems, seat cushion and sitting postures are some of the vital parameters that have huge impacts on comfort analysis. This review could help in design of seat cushions with appropriate material properties and in analysing the comfort levels of human body to reduce the vibration transmissibility at the critical frequency bands.