lorenzo ebri | University of Parma (original) (raw)
Related Authors
Friedrich-Alexander-Universität Erlangen-Nürnberg
Uploads
Papers by lorenzo ebri
Journal of The Audio Engineering Society, 2018
Binaural recording and playback has been used for decades in automotive industry for performing s... more Binaural recording and playback has been used for decades in automotive industry for performing subjective assessment of sound quality in cars, avoiding expensive and difficult tests on the road. Despite the success of this technology, several drawbacks are inherent in this approach. The playback on headphones does not benefit of head-tracking, so the localization is poor. The HRTFs embedded in the binaural rendering are those of the dummy head employed for recording the sound inside the car, and finally there is no visual feedback, so the listener gets a mismatch between visual and aural stimulations. The new Virtual Reality approach solves all these problems. The research focuses on obtaining a 360° panoramic video of the interior of vehicle, accompanied by audio processed in High Order Ambisonics format, ready for being rendered on a stereoscopic VR visor. It is also possible to superimpose onto the video a real-time colormap of noise levels, with iso-level curves and calibrated ...
Multichannel recordings are usually performed by means of microphone arrays. In many cases "... more Multichannel recordings are usually performed by means of microphone arrays. In many cases "sparse" and discrete microphone arrays are used, where each microphone is employed for capturing one of the channels, which in turn is routed to one loudspeaker. However, also the usage of "dense" microphone arrays has a long history, dating back to the first MS-matrixed microphones setups and passing through the whole Ambisonics saga. A dense microphone array is employed differently from a sparse array: each channel is obtained by a combination of the signals coming from all the capsules, by means of different matrixing and filtering approaches. And similarly, each loudspeaker feed results from a re-matrixing of all the transmitted channels. This paper is the third of a series: in the previous two [1,2] a numerical method for computing a matrix of FIR filter was employed for processing the microphone signals (encoding, [1]) and for computing the speaker feeds (decoding, [...
SAE Technical Paper Series
Journal of The Audio Engineering Society, 2018
Binaural recording and playback has been used for decades in automotive industry for performing s... more Binaural recording and playback has been used for decades in automotive industry for performing subjective assessment of sound quality in cars, avoiding expensive and difficult tests on the road. Despite the success of this technology, several drawbacks are inherent in this approach. The playback on headphones does not benefit of head-tracking, so the localization is poor. The HRTFs embedded in the binaural rendering are those of the dummy head employed for recording the sound inside the car, and finally there is no visual feedback, so the listener gets a mismatch between visual and aural stimulations. The new Virtual Reality approach solves all these problems. The research focuses on obtaining a 360° panoramic video of the interior of vehicle, accompanied by audio processed in High Order Ambisonics format, ready for being rendered on a stereoscopic VR visor. It is also possible to superimpose onto the video a real-time colormap of noise levels, with iso-level curves and calibrated ...
Multichannel recordings are usually performed by means of microphone arrays. In many cases "... more Multichannel recordings are usually performed by means of microphone arrays. In many cases "sparse" and discrete microphone arrays are used, where each microphone is employed for capturing one of the channels, which in turn is routed to one loudspeaker. However, also the usage of "dense" microphone arrays has a long history, dating back to the first MS-matrixed microphones setups and passing through the whole Ambisonics saga. A dense microphone array is employed differently from a sparse array: each channel is obtained by a combination of the signals coming from all the capsules, by means of different matrixing and filtering approaches. And similarly, each loudspeaker feed results from a re-matrixing of all the transmitted channels. This paper is the third of a series: in the previous two [1,2] a numerical method for computing a matrix of FIR filter was employed for processing the microphone signals (encoding, [1]) and for computing the speaker feeds (decoding, [...
SAE Technical Paper Series