i zuhorn | University of Groningen (original) (raw)

Papers by i zuhorn

Research paper thumbnail of In Vivo Biodistribution of Prion- and GM1-Targeted Polymersomes following Intravenous Administration in Mice

Molecular Pharmaceutics, 2012

Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinso... more Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinson's and Alzheimer's, is expected to grow and, hence, the demand for adequate treatment modalities. However, the delivery of medicines into the brain for the treatment of brain-related diseases is hampered by the presence of a tight layer of endothelial cells that forms the blood-brain barrier (BBB). Furthermore, most conventional drugs lack stability and/or bioavailability. These obstacles can be overcome by the application of nanocarriers, in which the therapeutic entity has been incorporated, provided that they are effectively targeted to the brain endothelial cell layer. Drug nanocarriers decorated with targeting ligands that bind BBB receptors may accumulate efficiently at/in brain microvascular endothelium and hence represent a promising tool for brain drug delivery. Following the accumulation of drug nanocarriers at the brain vasculature, the drug needs to be transported across the brain endothelial cells into the brain. Transport across brain endothelial cells can occur via passive diffusion, transport proteins, and the vesicular transport pathways of receptor-mediated and adsorptive-mediated transcytosis. When a small lipophilic drug is released from its carrier at the brain vasculature, it may enter the brain via passive diffusion. On the other hand, the passage of intact nanocarriers, which is necessary for the delivery of larger and more hydrophilic drugs into brain, may occur via active transport by means of transcytosis. In previous work we identified GM1 ganglioside and prion protein as potential transcytotic receptors at the BBB. GM1 is a glycosphingolipid that is ubiquitously present on the endothelial surface and capable of acting as the transcytotic receptor for cholera toxin B. Likewise, prion protein has been shown to have transcytotic capacity at brain endothelial cells. Here we determine the transcytotic potential of polymersome nanocarriers functionalized with GM1- and prion-targeting peptides (G23, P50 and P9), that were identified by phage display, in an in vitro BBB model. In addition, the biodistribution of polymersomes functionalized with either the prion-targeting peptide P50 or the GM1-targeting peptide G23 is determined following intravenous injection in mice. We show that the prion-targeting peptides do not induce efficient transcytosis of polymersomes across the BBB in vitro nor induce accumulation of polymersomes in the brain in vivo. In contrast, the G23 peptide is shown to have transcytotic capacity in brain endothelial cells in vitro, as well as a brain-targeting potential in vivo, as reflected by the accumulation of G23-polymersomes in the brain in vivo at a level comparable to that of RI7217-polymersomes, which are targeted toward the transferrin receptor. Thus the G23 peptide seems to serve both of the requirements that are needed for efficient brain drug delivery of nanocarriers. An unexpected finding was the efficient accumulation of G23-polymersomes in lung. In conclusion, because of its combined brain-targeting and transcytotic capacity, the G23 peptide could be useful in the development of targeted nanocarriers for drug delivery into the brain, but appears especially attractive for specific drug delivery to the lung.

Research paper thumbnail of On the Mechanism of Cationic Amphiphile-mediated Transfection. To Fuse or not to Fuse: Is that the Question?

Journal of Membrane Biology, 2002

Due to charge interaction, cationic lipids spontaneously associate with nucleic acids, resulting ... more Due to charge interaction, cationic lipids spontaneously associate with nucleic acids, resulting in the formation of so-called lipoplexes. Lipoplexes are membranous structures that are capable of transducing genes into cells, eventually leading to expression of the genes (transfection). The mechanism involved in the cellular uptake of lipoplexes is most likely endocytosis, which occurs after nonspecific charge-mediated binding to cellular receptors. An important step in the transfection process following the actual internalization of lipoplexes is the release of the lipoplex and/or its DNA into the cytoplasm in order to evade lysosomal degradation. Here, the membranous nature of the lipoplex seems to be crucial in that it allows the exchange of lipids between the endosomal membrane and the lipoplex, which results in membrane perturbations that are a prerequisite in the endosomal escape of DNA. Interestingly, a hexagonal phase of the lipoplexes has been correlated with efficient transfection and it can be envisaged that such a phase could be instrumental in the creation of membrane perturbations. Subsequent to its release into the cytoplasm, the DNA has to be transferred into the nucleus. The nuclear import of DNA is most likely a protein-mediated process. In addition, the nuclear uptake of DNA may be facilitated at the time of nuclear envelope disassembly during mitosis. Currently, cationic liposomes are widely used as gene carrier system to deliver nucleic acids into cells in culture to study the cell-biological functioning of genes plus accompanying proteins. Ultimately, cationic lipids may be used in gene therapeutic protocols.

Research paper thumbnail of Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation

Circulation Research, 2009

Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug a... more Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4-and 70-kDa dextrans through the cytosol, and localization of 155-and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin-and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4-to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size. (Circ Res. 2009;104:679-687.)

Research paper thumbnail of Lipoplex Formation under Equilibrium Conditions Reveals a Three-Step Mechanism

Biophysical Journal, 2000

Cellular transfection can be accomplished by the use of synthetic amphiphiles as gene carrier sys... more Cellular transfection can be accomplished by the use of synthetic amphiphiles as gene carrier system. To understand the mechanism and hence to improve the efficiency of transfection, insight into the assembly and properties of the amphiphile/gene complex is crucial. Here, we have studied the interaction between a plasmid and cationic amphiphiles, using a monolayer technique, and have examined complex assembly by atomic force microscopy. The data reveal a three-step mechanism for complex formation. In a first step, the plasmids, interacting with the monolayer, display a strong tendency of orientational ordering. Subsequently, individual plasmids enwrap themselves with amphiphile molecules in a multilamellar fashion. The size of the complex formed is determined by the supercoiled size of the plasmid, and calculations reveal that the plasmid can be surrounded by 3 to 5 bilayers of the amphiphile. The eventual size of the transfecting complex is finally governed by fusion events between individually wrapped amphiphile/DNA complexes. In bulk phase, where complex assembly is triggered by mixing amphiphilic vesicles and plasmids, a similar wrapping process is observed. However, in this case, imperfections in this process may give rise to a partial exposure of plasmids, i.e., part of the plasmid is not covered with a layer of amphiphile. We suggest that these exposed sites may act as nucleation sites for massive lipoplex clustering, which in turn may affect transfection efficiency.

Research paper thumbnail of Lipoplex-mediated Transfection of Mammalian Cells Occurs through the Cholesterol-dependent Clathrin-mediated Pathway of Endocytosis

Journal of Biological Chemistry, 2002

Synthetic amphiphiles are widely used as a carrier system. However, to match transfection efficie... more Synthetic amphiphiles are widely used as a carrier system. However, to match transfection efficiencies as obtained for viral vectors, further insight is required into the properties of lipoplexes that dictate transfection efficiency, including the mechanism of delivery. Although endocytosis is often referred to as the pathway of lipoplex entry and transfection, its precise nature has been poorly defined. Here, we demonstrate that lipoplex-mediated transfection is inhibited by more than 80%, when plasma membrane cholesterol is depleted with methyl-␤-cyclodextrin. Cholesterol replenishment restores the transfection capacity. Investigation of the cellular distribution of lipoplexes after cholesterol depletion revealed an exclusive inhibition of internalization, whereas cell-association remained unaffected. These data strongly support the notion that complex internalization, rather than the direct translocation of plasmid across the plasma membrane, is a prerequisite for accomplishing effective lipoplex-mediated transfection. We demonstrate that internalized lipoplexes colocalize with transferrin in early endocytic compartments and that lipoplex internalization is inhibited in potassium-depleted cells and in cells overexpressing dominant negative Eps15 mutants. In conjunction with the notion that caveolae-mediated internalization can be excluded, we conclude that efficient lipoplex-mediated transfection requires complex internalization via the cholesteroldependent clathrin-mediated pathway of endocytosis.

Research paper thumbnail of Solid lipid nanoparticles for gene delivery into prostate cancer cells

Drug Discovery Today, 2010

we studied the optimal conditions for attachment and proliferation of the astrocytes and hBECs. F... more we studied the optimal conditions for attachment and proliferation of the astrocytes and hBECs. Furthermore, we monitored the effect of hBEC growing directly on the surface of an adherent astrocytic monolayer. The tight junctions between the brain endothelial cells forms a diffusion barrier that is responsible for the high paracellular resistance which is a crucial characteristic for any B3-model. In order to test the integrity of this barrier in the B3-model and simultaneously measure the transcellular transport we combined fluorescent compounds and dye labelled large molecules to test the permeability across the barrier. This strategy allows for the discrimination between transcellular and paracellular transport.

Research paper thumbnail of Design of solid lipid nanoparticles for gene delivery into prostate cancer

Journal of Controlled Release, 2010

. Transfection activity of MENS compared to those of P/DNA, P/DNA/M and naked DNA.

Research paper thumbnail of Nonbilayer Phase of Lipoplex–Membrane Mixture Determines Endosomal Escape of Genetic Cargo and Transfection Efficiency

Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolam... more Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolamine (DOPE) as a helper lipid in cationic lipid-DNA formulations often promotes transfection efficacy. To investigate the significance of DOPETs preference to adopt a hexagonal phase in the mechanism of transfection, the properties and transfection efficiencies of SAINT-2/DOPE lipoplexes were compared to those of lipoplexes containing lamellar-phase-forming dipalmitoylphosphatidylethanolamine (DPPE). After interaction with anionic vesicles, to simulate lipoplex-endosomal membrane interaction, SAINT-2/DOPE lipoplexes show a perfect hexagonal phase, whereas SAINT-2/DPPE lipoplexes form a mixed lamellar-hexagonal phase. The transition to the hexagonal phase is crucial for dissociation of DNA or oligonucleotides (ODN) from the lipoplexes. However, while the efficiencies of nucleic acid release from either complex were similar, SAINT-2/DOPE lipoplexes displayed a two-to threefold higher transfection efficiency or nuclear ODN delivery. Interestingly, rupture of endosomes following a cellular incubation with ODN-containing SAINT-2/DPPE complexes dramatically improved nuclear ODN delivery to a level that was similar to that observed for SAINT-2/DOPE complexes. Our data demonstrate that although hexagonal phase formation in lipoplexes is a prerequisite for nucleic acid release from the complex, it appears highly critical for accomplishing efficient translocation of nucleic acids across the endosomal membrane into the cytosol for transport to the nucleus.

Research paper thumbnail of Adhesion Receptors Mediate Efficient Non-viral Gene Delivery

Molecular Therapy, 2007

For a variety of reasons, including production limitations, potential unanticipated side effects,... more For a variety of reasons, including production limitations, potential unanticipated side effects, and an immunological response upon repeated systemic administration, virus-based vectors are as yet not ideal gene delivery vehicles, justifying further research into alternatives. Unlike viral vectors, non-viral vectors pose minimal health risks, but to meet therapeutic requirements their efficacy needs major improvement. This goal may be accomplished by better defining the mechanism of non-viral gene delivery and exploiting specific cellular properties.

Research paper thumbnail of Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection

Journal of Controlled Release, 2011

... [15] IS Zuhorn, D. Kalicharan, GT Robillard, D. Hoekstra, Adhesion receptors mediate efficien... more ... [15] IS Zuhorn, D. Kalicharan, GT Robillard, D. Hoekstra, Adhesion receptors mediate efficient non-viral gene delivery. ... [18] SP Davies, H. Reddy, M. Caivano, P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors. ...

Research paper thumbnail of Gene delivery by cationic lipid vectors: overcoming cellular barriers

European Biophysics Journal With Biophysics Letters, 2007

Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including gene... more Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suffer from immunological and mutational hazards. However, the efficiency of cationic-mediated gene delivery, although often sufficient for cell biological purposes, runs seriously short from a therapeutics point of view, as realizing this objective requires a higher level of transfection than attained thus far. To develop strategies for improvement, there is not so much a need for novel delivery systems. Rather, better insight is needed into the mechanism of delivery, including lipoplex–cell surface interaction, route of internalization and concomitant escape of DNA/RNA into the cytosol, and transport into the nucleus. Current work indicates that a major obstacle involves the relative inefficient destabilization of membrane-bounded compartments in which lipoplexes reside after their internalization by the cell. Such an activity requires the capacity of lipoplexes of undergoing polymorphic transitions such as a membrane destabilizing hexagonal phase, while cellular components may aid in this process. A consequence of the latter notion is that for development of a novel generation of delivery devices, entry pathways have to be triggered by specific targeting to select delivery into intracellular compartments which are most susceptible to lipoplex-induced destabilization, thereby allowing the most efficient release of DNA, a minimal requirement for optimizing non-viral vector-mediated transfection.

Research paper thumbnail of Interference of serum with lipoplex–cell interaction: modulation of intracellular processing

Biochimica Et Biophysica Acta-biomembranes, 2002

We have investigated the mechanism of lipoplex-mediated transfection, employing a dialkyl pyridin... more We have investigated the mechanism of lipoplex-mediated transfection, employing a dialkyl pyridinium surfactant (SAINT-2), and using serum as a modulator of complex stability and processing. Particle size and stability determine lipoplex internalization, the kinetics of intracellular processing, and transfection efficiency. Clustered SAINT-2 lipoplexes are obtained in the absence of serum (3FBS lipoplexes), but not in its presence (+FBS lipoplexes), or when serum was present during lipoplex formation [FBS], conditions that mimic potential penetration of serum proteins. The topology of DNA in [FBS] lipoplexes shifts from a supercoiled, as in 3FBS lipoplexes, to a predominantly open-circular conformation, and is more prone to digestion by DNase. Consistently, atomic force microscopy revealed complexes with tubular extensions, reflecting DNA that protrudes from the lipoplex surface. Interestingly, the internalization of [FBS] lipoplexes is approximately three-fold higher than that of 3FBS and +FBS lipoplexes, yet their transfection efficiency is approximately five-fold lower. Moreover, in contrast to 3FBS and +FBS complexes, [FBS] complexes were rapidly processed into the late endosomal/lysosomal degradation pathway. Intriguingly, transfection by [FBS] complexes is greatly improved by osmotic rupture of endocytic compartments. Our data imply that constraints in size and morphology govern the complex' ability to interact with and perturb cellular membranes, required for gene release. By extrapolation, we propose that serum may regulate these parameters in an amphiphile-dependent manner, by complex`penetration' and modulation of DNA conformation. ß

Research paper thumbnail of Gene delivery by cationic lipids: in and out of an endosome

Biochemical Society Transactions, 2007

Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic ac... more Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic acids, including genes, into cells for both therapeutic and cell biological purposes. However, to meet therapeutic requirements, their efficacy needs major improvement, and better defining the mechanism of entry in relation to eventual transfection efficiency could be part of such a strategy. Endocytosis is the major pathway of entry, but the relative contribution of distinct endocytic pathways, including clathrin- and caveolae-mediated endocytosis and/or macropinocytosis is as yet poorly defined. Escape of DNA/RNA from endosomal compartments is thought to represent a major obstacle. Evidence is accumulating that non-lamellar phase changes of the lipoplexes, facilitated by intracellular lipids, which allow DNA to dissociate from the vector and destabilize endosomal membranes, are instrumental in plasmid translocation into the cytosol, a prerequisite for nuclear delivery. To further clarify molecular mechanisms and to appreciate and overcome intracellular hurdles in lipoplex-mediated gene delivery, quantification of distinct steps in overall transfection and proper model systems are required.

Research paper thumbnail of Gene delivery by cationic lipids: in and out of an endosome

Biochemical Society Transactions, 2007

Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic ac... more Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic acids, including genes, into cells for both therapeutic and cell biological purposes. However, to meet therapeutic requirements, their efficacy needs major improvement, and better defining the mechanism of entry in relation to eventual transfection efficiency could be part of such a strategy. Endocytosis is the major pathway of entry, but the relative contribution of distinct endocytic pathways, including clathrin- and caveolae-mediated endocytosis and/or macropinocytosis is as yet poorly defined. Escape of DNA/RNA from endosomal compartments is thought to represent a major obstacle. Evidence is accumulating that non-lamellar phase changes of the lipoplexes, facilitated by intracellular lipids, which allow DNA to dissociate from the vector and destabilize endosomal membranes, are instrumental in plasmid translocation into the cytosol, a prerequisite for nuclear delivery. To further clarify molecular mechanisms and to appreciate and overcome intracellular hurdles in lipoplex-mediated gene delivery, quantification of distinct steps in overall transfection and proper model systems are required.

Research paper thumbnail of In Vivo Biodistribution of Prion- and GM1-Targeted Polymersomes following Intravenous Administration in Mice

Molecular Pharmaceutics, 2012

Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinso... more Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinson's and Alzheimer's, is expected to grow and, hence, the demand for adequate treatment modalities. However, the delivery of medicines into the brain for the treatment of brain-related diseases is hampered by the presence of a tight layer of endothelial cells that forms the blood-brain barrier (BBB). Furthermore, most conventional drugs lack stability and/or bioavailability. These obstacles can be overcome by the application of nanocarriers, in which the therapeutic entity has been incorporated, provided that they are effectively targeted to the brain endothelial cell layer. Drug nanocarriers decorated with targeting ligands that bind BBB receptors may accumulate efficiently at/in brain microvascular endothelium and hence represent a promising tool for brain drug delivery. Following the accumulation of drug nanocarriers at the brain vasculature, the drug needs to be transported across the brain endothelial cells into the brain. Transport across brain endothelial cells can occur via passive diffusion, transport proteins, and the vesicular transport pathways of receptor-mediated and adsorptive-mediated transcytosis. When a small lipophilic drug is released from its carrier at the brain vasculature, it may enter the brain via passive diffusion. On the other hand, the passage of intact nanocarriers, which is necessary for the delivery of larger and more hydrophilic drugs into brain, may occur via active transport by means of transcytosis. In previous work we identified GM1 ganglioside and prion protein as potential transcytotic receptors at the BBB. GM1 is a glycosphingolipid that is ubiquitously present on the endothelial surface and capable of acting as the transcytotic receptor for cholera toxin B. Likewise, prion protein has been shown to have transcytotic capacity at brain endothelial cells. Here we determine the transcytotic potential of polymersome nanocarriers functionalized with GM1- and prion-targeting peptides (G23, P50 and P9), that were identified by phage display, in an in vitro BBB model. In addition, the biodistribution of polymersomes functionalized with either the prion-targeting peptide P50 or the GM1-targeting peptide G23 is determined following intravenous injection in mice. We show that the prion-targeting peptides do not induce efficient transcytosis of polymersomes across the BBB in vitro nor induce accumulation of polymersomes in the brain in vivo. In contrast, the G23 peptide is shown to have transcytotic capacity in brain endothelial cells in vitro, as well as a brain-targeting potential in vivo, as reflected by the accumulation of G23-polymersomes in the brain in vivo at a level comparable to that of RI7217-polymersomes, which are targeted toward the transferrin receptor. Thus the G23 peptide seems to serve both of the requirements that are needed for efficient brain drug delivery of nanocarriers. An unexpected finding was the efficient accumulation of G23-polymersomes in lung. In conclusion, because of its combined brain-targeting and transcytotic capacity, the G23 peptide could be useful in the development of targeted nanocarriers for drug delivery into the brain, but appears especially attractive for specific drug delivery to the lung.

Research paper thumbnail of On the Mechanism of Cationic Amphiphile-mediated Transfection. To Fuse or not to Fuse: Is that the Question?

Journal of Membrane Biology, 2002

Due to charge interaction, cationic lipids spontaneously associate with nucleic acids, resulting ... more Due to charge interaction, cationic lipids spontaneously associate with nucleic acids, resulting in the formation of so-called lipoplexes. Lipoplexes are membranous structures that are capable of transducing genes into cells, eventually leading to expression of the genes (transfection). The mechanism involved in the cellular uptake of lipoplexes is most likely endocytosis, which occurs after nonspecific charge-mediated binding to cellular receptors. An important step in the transfection process following the actual internalization of lipoplexes is the release of the lipoplex and/or its DNA into the cytoplasm in order to evade lysosomal degradation. Here, the membranous nature of the lipoplex seems to be crucial in that it allows the exchange of lipids between the endosomal membrane and the lipoplex, which results in membrane perturbations that are a prerequisite in the endosomal escape of DNA. Interestingly, a hexagonal phase of the lipoplexes has been correlated with efficient transfection and it can be envisaged that such a phase could be instrumental in the creation of membrane perturbations. Subsequent to its release into the cytoplasm, the DNA has to be transferred into the nucleus. The nuclear import of DNA is most likely a protein-mediated process. In addition, the nuclear uptake of DNA may be facilitated at the time of nuclear envelope disassembly during mitosis. Currently, cationic liposomes are widely used as gene carrier system to deliver nucleic acids into cells in culture to study the cell-biological functioning of genes plus accompanying proteins. Ultimately, cationic lipids may be used in gene therapeutic protocols.

Research paper thumbnail of Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation

Circulation Research, 2009

Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug a... more Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4-and 70-kDa dextrans through the cytosol, and localization of 155-and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin-and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4-to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size. (Circ Res. 2009;104:679-687.)

Research paper thumbnail of Lipoplex Formation under Equilibrium Conditions Reveals a Three-Step Mechanism

Biophysical Journal, 2000

Cellular transfection can be accomplished by the use of synthetic amphiphiles as gene carrier sys... more Cellular transfection can be accomplished by the use of synthetic amphiphiles as gene carrier system. To understand the mechanism and hence to improve the efficiency of transfection, insight into the assembly and properties of the amphiphile/gene complex is crucial. Here, we have studied the interaction between a plasmid and cationic amphiphiles, using a monolayer technique, and have examined complex assembly by atomic force microscopy. The data reveal a three-step mechanism for complex formation. In a first step, the plasmids, interacting with the monolayer, display a strong tendency of orientational ordering. Subsequently, individual plasmids enwrap themselves with amphiphile molecules in a multilamellar fashion. The size of the complex formed is determined by the supercoiled size of the plasmid, and calculations reveal that the plasmid can be surrounded by 3 to 5 bilayers of the amphiphile. The eventual size of the transfecting complex is finally governed by fusion events between individually wrapped amphiphile/DNA complexes. In bulk phase, where complex assembly is triggered by mixing amphiphilic vesicles and plasmids, a similar wrapping process is observed. However, in this case, imperfections in this process may give rise to a partial exposure of plasmids, i.e., part of the plasmid is not covered with a layer of amphiphile. We suggest that these exposed sites may act as nucleation sites for massive lipoplex clustering, which in turn may affect transfection efficiency.

Research paper thumbnail of Lipoplex-mediated Transfection of Mammalian Cells Occurs through the Cholesterol-dependent Clathrin-mediated Pathway of Endocytosis

Journal of Biological Chemistry, 2002

Synthetic amphiphiles are widely used as a carrier system. However, to match transfection efficie... more Synthetic amphiphiles are widely used as a carrier system. However, to match transfection efficiencies as obtained for viral vectors, further insight is required into the properties of lipoplexes that dictate transfection efficiency, including the mechanism of delivery. Although endocytosis is often referred to as the pathway of lipoplex entry and transfection, its precise nature has been poorly defined. Here, we demonstrate that lipoplex-mediated transfection is inhibited by more than 80%, when plasma membrane cholesterol is depleted with methyl-␤-cyclodextrin. Cholesterol replenishment restores the transfection capacity. Investigation of the cellular distribution of lipoplexes after cholesterol depletion revealed an exclusive inhibition of internalization, whereas cell-association remained unaffected. These data strongly support the notion that complex internalization, rather than the direct translocation of plasmid across the plasma membrane, is a prerequisite for accomplishing effective lipoplex-mediated transfection. We demonstrate that internalized lipoplexes colocalize with transferrin in early endocytic compartments and that lipoplex internalization is inhibited in potassium-depleted cells and in cells overexpressing dominant negative Eps15 mutants. In conjunction with the notion that caveolae-mediated internalization can be excluded, we conclude that efficient lipoplex-mediated transfection requires complex internalization via the cholesteroldependent clathrin-mediated pathway of endocytosis.

Research paper thumbnail of Solid lipid nanoparticles for gene delivery into prostate cancer cells

Drug Discovery Today, 2010

we studied the optimal conditions for attachment and proliferation of the astrocytes and hBECs. F... more we studied the optimal conditions for attachment and proliferation of the astrocytes and hBECs. Furthermore, we monitored the effect of hBEC growing directly on the surface of an adherent astrocytic monolayer. The tight junctions between the brain endothelial cells forms a diffusion barrier that is responsible for the high paracellular resistance which is a crucial characteristic for any B3-model. In order to test the integrity of this barrier in the B3-model and simultaneously measure the transcellular transport we combined fluorescent compounds and dye labelled large molecules to test the permeability across the barrier. This strategy allows for the discrimination between transcellular and paracellular transport.

Research paper thumbnail of Design of solid lipid nanoparticles for gene delivery into prostate cancer

Journal of Controlled Release, 2010

. Transfection activity of MENS compared to those of P/DNA, P/DNA/M and naked DNA.

Research paper thumbnail of Nonbilayer Phase of Lipoplex–Membrane Mixture Determines Endosomal Escape of Genetic Cargo and Transfection Efficiency

Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolam... more Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolamine (DOPE) as a helper lipid in cationic lipid-DNA formulations often promotes transfection efficacy. To investigate the significance of DOPETs preference to adopt a hexagonal phase in the mechanism of transfection, the properties and transfection efficiencies of SAINT-2/DOPE lipoplexes were compared to those of lipoplexes containing lamellar-phase-forming dipalmitoylphosphatidylethanolamine (DPPE). After interaction with anionic vesicles, to simulate lipoplex-endosomal membrane interaction, SAINT-2/DOPE lipoplexes show a perfect hexagonal phase, whereas SAINT-2/DPPE lipoplexes form a mixed lamellar-hexagonal phase. The transition to the hexagonal phase is crucial for dissociation of DNA or oligonucleotides (ODN) from the lipoplexes. However, while the efficiencies of nucleic acid release from either complex were similar, SAINT-2/DOPE lipoplexes displayed a two-to threefold higher transfection efficiency or nuclear ODN delivery. Interestingly, rupture of endosomes following a cellular incubation with ODN-containing SAINT-2/DPPE complexes dramatically improved nuclear ODN delivery to a level that was similar to that observed for SAINT-2/DOPE complexes. Our data demonstrate that although hexagonal phase formation in lipoplexes is a prerequisite for nucleic acid release from the complex, it appears highly critical for accomplishing efficient translocation of nucleic acids across the endosomal membrane into the cytosol for transport to the nucleus.

Research paper thumbnail of Adhesion Receptors Mediate Efficient Non-viral Gene Delivery

Molecular Therapy, 2007

For a variety of reasons, including production limitations, potential unanticipated side effects,... more For a variety of reasons, including production limitations, potential unanticipated side effects, and an immunological response upon repeated systemic administration, virus-based vectors are as yet not ideal gene delivery vehicles, justifying further research into alternatives. Unlike viral vectors, non-viral vectors pose minimal health risks, but to meet therapeutic requirements their efficacy needs major improvement. This goal may be accomplished by better defining the mechanism of non-viral gene delivery and exploiting specific cellular properties.

Research paper thumbnail of Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection

Journal of Controlled Release, 2011

... [15] IS Zuhorn, D. Kalicharan, GT Robillard, D. Hoekstra, Adhesion receptors mediate efficien... more ... [15] IS Zuhorn, D. Kalicharan, GT Robillard, D. Hoekstra, Adhesion receptors mediate efficient non-viral gene delivery. ... [18] SP Davies, H. Reddy, M. Caivano, P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors. ...

Research paper thumbnail of Gene delivery by cationic lipid vectors: overcoming cellular barriers

European Biophysics Journal With Biophysics Letters, 2007

Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including gene... more Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suffer from immunological and mutational hazards. However, the efficiency of cationic-mediated gene delivery, although often sufficient for cell biological purposes, runs seriously short from a therapeutics point of view, as realizing this objective requires a higher level of transfection than attained thus far. To develop strategies for improvement, there is not so much a need for novel delivery systems. Rather, better insight is needed into the mechanism of delivery, including lipoplex–cell surface interaction, route of internalization and concomitant escape of DNA/RNA into the cytosol, and transport into the nucleus. Current work indicates that a major obstacle involves the relative inefficient destabilization of membrane-bounded compartments in which lipoplexes reside after their internalization by the cell. Such an activity requires the capacity of lipoplexes of undergoing polymorphic transitions such as a membrane destabilizing hexagonal phase, while cellular components may aid in this process. A consequence of the latter notion is that for development of a novel generation of delivery devices, entry pathways have to be triggered by specific targeting to select delivery into intracellular compartments which are most susceptible to lipoplex-induced destabilization, thereby allowing the most efficient release of DNA, a minimal requirement for optimizing non-viral vector-mediated transfection.

Research paper thumbnail of Interference of serum with lipoplex–cell interaction: modulation of intracellular processing

Biochimica Et Biophysica Acta-biomembranes, 2002

We have investigated the mechanism of lipoplex-mediated transfection, employing a dialkyl pyridin... more We have investigated the mechanism of lipoplex-mediated transfection, employing a dialkyl pyridinium surfactant (SAINT-2), and using serum as a modulator of complex stability and processing. Particle size and stability determine lipoplex internalization, the kinetics of intracellular processing, and transfection efficiency. Clustered SAINT-2 lipoplexes are obtained in the absence of serum (3FBS lipoplexes), but not in its presence (+FBS lipoplexes), or when serum was present during lipoplex formation [FBS], conditions that mimic potential penetration of serum proteins. The topology of DNA in [FBS] lipoplexes shifts from a supercoiled, as in 3FBS lipoplexes, to a predominantly open-circular conformation, and is more prone to digestion by DNase. Consistently, atomic force microscopy revealed complexes with tubular extensions, reflecting DNA that protrudes from the lipoplex surface. Interestingly, the internalization of [FBS] lipoplexes is approximately three-fold higher than that of 3FBS and +FBS lipoplexes, yet their transfection efficiency is approximately five-fold lower. Moreover, in contrast to 3FBS and +FBS complexes, [FBS] complexes were rapidly processed into the late endosomal/lysosomal degradation pathway. Intriguingly, transfection by [FBS] complexes is greatly improved by osmotic rupture of endocytic compartments. Our data imply that constraints in size and morphology govern the complex' ability to interact with and perturb cellular membranes, required for gene release. By extrapolation, we propose that serum may regulate these parameters in an amphiphile-dependent manner, by complex`penetration' and modulation of DNA conformation. ß

Research paper thumbnail of Gene delivery by cationic lipids: in and out of an endosome

Biochemical Society Transactions, 2007

Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic ac... more Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic acids, including genes, into cells for both therapeutic and cell biological purposes. However, to meet therapeutic requirements, their efficacy needs major improvement, and better defining the mechanism of entry in relation to eventual transfection efficiency could be part of such a strategy. Endocytosis is the major pathway of entry, but the relative contribution of distinct endocytic pathways, including clathrin- and caveolae-mediated endocytosis and/or macropinocytosis is as yet poorly defined. Escape of DNA/RNA from endosomal compartments is thought to represent a major obstacle. Evidence is accumulating that non-lamellar phase changes of the lipoplexes, facilitated by intracellular lipids, which allow DNA to dissociate from the vector and destabilize endosomal membranes, are instrumental in plasmid translocation into the cytosol, a prerequisite for nuclear delivery. To further clarify molecular mechanisms and to appreciate and overcome intracellular hurdles in lipoplex-mediated gene delivery, quantification of distinct steps in overall transfection and proper model systems are required.

Research paper thumbnail of Gene delivery by cationic lipids: in and out of an endosome

Biochemical Society Transactions, 2007

Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic ac... more Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic acids, including genes, into cells for both therapeutic and cell biological purposes. However, to meet therapeutic requirements, their efficacy needs major improvement, and better defining the mechanism of entry in relation to eventual transfection efficiency could be part of such a strategy. Endocytosis is the major pathway of entry, but the relative contribution of distinct endocytic pathways, including clathrin- and caveolae-mediated endocytosis and/or macropinocytosis is as yet poorly defined. Escape of DNA/RNA from endosomal compartments is thought to represent a major obstacle. Evidence is accumulating that non-lamellar phase changes of the lipoplexes, facilitated by intracellular lipids, which allow DNA to dissociate from the vector and destabilize endosomal membranes, are instrumental in plasmid translocation into the cytosol, a prerequisite for nuclear delivery. To further clarify molecular mechanisms and to appreciate and overcome intracellular hurdles in lipoplex-mediated gene delivery, quantification of distinct steps in overall transfection and proper model systems are required.