Nuclear Science (original) (raw)

In the history of atomic research, few stories are as gripping or cautionary as that of the demon core, a plutonium sphere designed for one of history's most devastating weapons. This tale not only encapsulates the highest point of atomic ambition but also serves as a somber reminder of the human cost associated with such power.

By Clarissa Mitton

In nuclear physics, the concept of half-life plays a crucial role in understanding the decay of radioactive substances. Scientists use the half-life formula in other disciplines to predict the rate of decay, as well as measure the age of ancient artifacts through carbon dating.

By Yara Simón

The Standard Model of physics provides a framework for the subatomic world of all energies. Could a possible newfound carrier boson expand the definition of that framework?

By Mark Mancini

Tour the inside of a nuclear power plant with these illustrative diagrams to learn more about how nuclear power plants work.

By Allison Loudermilk

The nuclear arms race was a frantic era in which several nations tested nuclear technology and stockpiled warheads. Read about the nuclear arms race.

By John Fuller

Dropping atomic bombs on Hiroshima and Nagasaki ended World War II. How did the most powerful weapon in the world get developed? It started with the Manhattan Project.

By John Fuller

Thorium is in many ways safer than uranium for nuclear power production. But is it safe enough to bet on for our energy future?

By Jesslyn Shields

In 1957, Hugh Everett first wrote about the multiverse — different realms where every choice spawns a separate universe in which another version of ourselves does something different. It sounds crazy, but here are some reasons it might be true.

By Patrick J. Kiger

The seriously ambitious experiment aims to understand the mysterious neutrino and maybe even figure out why matter won out over antimatter during the Big Bang.

By Ian O'Neill, Ph.D.

The Large Hadron Collider isn't just a one-trick (Higgs) pony. Find out what else has happened where hundreds of millions of particles may collide any given second.

By Nicholas Gerbis

When something as important as the Higgs rocks our world, we want to know every last thing about it, including what it looks like. So?

By Kate Kershner

Of all the superheroes we have in the universe, supersymmetry might be the one that will save us from total annihilation. Not because it fights bad guys, but because it just might explain how the tiniest parts of the cosmos work.

By Kate Kershner

Nuclear waste epitomizes the double-edged sword of modern technology. It's a toxic and radioactive byproduct of nuclear medicine, nuclear weapons manufacturing and nuclear power plants.

By Nathan Chandler

Explosions, fires and dangerous radiation levels dominated the headlines after the March 11 earthquake and tsunami sparked a nuclear crisis in Japan. How did so many safety measures fail?

By Marshall Brain

The International Thermonuclear Experimental Reactor plant aims to demonstrate that nuclear fusion could be a viable source of power in the future.

By Patrick J. Kiger

The proposed collider would dwarf the existing Large Hadron Collider. But is the $22 billion price tag worth it?

By John Perritano

Who wants to reduce our complicated universe down to its simplest building blocks? A bunch of particle physicists, that's who. Why is the Higgs boson critical to that goal?

By Jonathan Atteberry & Sascha Bos

Thanks to our voracious appetite for energy, the element long linked with nuclear weapons is taking on a new role. Where does the hunt begin for uranium?

By Marianne Spoon

Iran has announced its activation of a second set of uranium centrifuges. These machines are at the core of the uranium-enrichment process. Find out where the centrifuge fits into the equation.

By Marshall Brain

Nuclear materials get used in many forms of nuclear medicine -- everything from PET scans to chemotherapy uses them. Learn how nuclear medicine works.

By Craig Freudenrich, Ph.D.

On the one hand, nuclear power offers a clean energy alternative that decreases fossil fuel dependence. On the other, it summons images of quake-ruptured Japanese power plants leaking radioactive water. What happens in reactors in good times and bad?

By Marshall Brain, Robert Lamb & Patrick J. Kiger

If the sight of a mushroom cloud burning above the horizon suggests that the nuclear weapon-equipped world might end with a bang, then nuclear winter presents the notion that post-World War III humanity might very well die with a whimper.

By Robert Lamb

In the comics, radiation exposure turned an average man into a pea green and angry Incredible Hulk. But in reality, what can radiation do to those exposed? Is it always a villain?

By Debra Ronca

Over the years, nuclear reactors have been viewed as both a miracle and a menace. How does a nuclear reactor do its job? And what happens when something goes wrong?

By Patrick J. Kiger

It's lunchtime, and you've spastically spilled soda all over your desk. Chances are you could tackle that mess faster than we could say "Mr. Clean." What do you do though when the spill is radioactive?

By Jonathan Atteberry