sklearn.preprocessing.Imputer — scikit-learn 0.20.4 documentation (original) (raw)
class sklearn.preprocessing.
Imputer
(*args, **kwargs)[source]¶
Imputation transformer for completing missing values.
Read more in the User Guide.
Parameters: | missing_values : integer or “NaN”, optional (default=”NaN”) The placeholder for the missing values. All occurrences ofmissing_values will be imputed. For missing values encoded as np.nan, use the string value “NaN”. strategy : string, optional (default=”mean”) The imputation strategy. If “mean”, then replace missing values using the mean along the axis. If “median”, then replace missing values using the median along the axis. If “most_frequent”, then replace missing using the most frequent value along the axis. axis : integer, optional (default=0) The axis along which to impute. If axis=0, then impute along columns. If axis=1, then impute along rows. verbose : integer, optional (default=0) Controls the verbosity of the imputer. copy : boolean, optional (default=True) If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if copy=False: If X is not an array of floating values; If X is sparse and missing_values=0; If axis=0 and X is encoded as a CSR matrix; If axis=1 and X is encoded as a CSC matrix. |
---|---|
Attributes: | statistics_ : array of shape (n_features,) The imputation fill value for each feature if axis == 0. |
Notes
- When
axis=0
, columns which only contained missing values at fitare discarded upon transform. - When
axis=1
, an exception is raised if there are rows for which it is not possible to fill in the missing values (e.g., because they only contain missing values).
Methods
fit(X[, y]) | Fit the imputer on X. |
---|---|
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
set_params(**params) | Set the parameters of this estimator. |
transform(X) | Impute all missing values in X. |
__init__
(*args, **kwargs)[source]¶
DEPRECATED: Imputer was deprecated in version 0.20 and will be removed in 0.22. Import impute.SimpleImputer from sklearn instead.
Fit the imputer on X.
Parameters: | X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data, where n_samples is the number of samples andn_features is the number of features. |
---|---|
Returns: | self : Imputer |
fit_transform
(X, y=None, **fit_params)[source]¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params
(deep=True)[source]¶
Get parameters for this estimator.
Parameters: | deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: | params : mapping of string to any Parameter names mapped to their values. |
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self |
---|
Impute all missing values in X.
Parameters: | X : {array-like, sparse matrix}, shape = [n_samples, n_features] The input data to complete. |
---|