sklearn.preprocessing.LabelEncoder — scikit-learn 0.20.4 documentation (original) (raw)

class sklearn.preprocessing. LabelEncoder[source]

Encode labels with value between 0 and n_classes-1.

Read more in the User Guide.

Attributes: classes_ : array of shape (n_class,) Holds the label for each class.

Examples

LabelEncoder can be used to normalize labels.

from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit([1, 2, 2, 6]) LabelEncoder() le.classes_ array([1, 2, 6]) le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]...) le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels.

le = preprocessing.LabelEncoder() le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() list(le.classes_) ['amsterdam', 'paris', 'tokyo'] le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris']

Methods

fit(y) Fit label encoder
fit_transform(y) Fit label encoder and return encoded labels
get_params([deep]) Get parameters for this estimator.
inverse_transform(y) Transform labels back to original encoding.
set_params(**params) Set the parameters of this estimator.
transform(y) Transform labels to normalized encoding.

__init__($self, /, *args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

fit(y)[source]

Fit label encoder

Parameters: y : array-like of shape (n_samples,) Target values.
Returns: self : returns an instance of self.

fit_transform(y)[source]

Fit label encoder and return encoded labels

Parameters: y : array-like of shape [n_samples] Target values.
Returns: y : array-like of shape [n_samples]

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters: deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any Parameter names mapped to their values.

inverse_transform(y)[source]

Transform labels back to original encoding.

Parameters: y : numpy array of shape [n_samples] Target values.
Returns: y : numpy array of shape [n_samples]

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns: self

transform(y)[source]

Transform labels to normalized encoding.

Parameters: y : array-like of shape [n_samples] Target values.
Returns: y : array-like of shape [n_samples]