scikit-multiflow (original) (raw)

Incremental learning

Stream learning models are created incrementally and are updated continuously. They are suitable for big data applications where real-time response is vital.

Adaptive learning

Changes in data distribution harm learning. Adaptive methods are specifically designed to be robust to concept drift changes in dynamic environments.

Resource-wise efficient

Streaming techniques efficiently handle resources such as memory and processing time given the unbounded nature of data streams.

Easy to use

scikit-multiflow is designed for users with any experience level. Experiments are easy to design, setup, and run. Existing methods are easy to modify and extend.

Stream learning tools

In its current state, scikit-multiflow contains data generators, multi-output/multi-target stream learning methods, change detection methods, evaluation methods, and more.

Open source

Distributed under the BSD 3-Clause, scikit-multiflow is developed and maintained publicly on GitHub by an active, diverse and growing community.