Sumudu Athukorale | University of Sri Jayewardenepura (original) (raw)

Uploads

Papers by Sumudu Athukorale

Research paper thumbnail of Teaching Old Polymers New Tricks: Improved Synthesis and Anomalous Crystallinity for a Lost Semi‐Fluorinated Polyaryl Ether via Interfacial Polymerization of Hexafluoroacetone Hydrate and Diphenyl Ether

Macromolecular Rapid Communications

A practical and direct electrophilic polymerization of hexafluoroacetone hydrate with diphenyl et... more A practical and direct electrophilic polymerization of hexafluoroacetone hydrate with diphenyl ether toward the preparation of semi‐fluorinated polyaryl ethers (PAE) is reported. Electrophilic aromatic substitution (EAS) polymerization under interfacial conditions with phase transfer catalyst (Aliquat 336) proceeds in trifluoromethanesulfonic anhydride by generation of trifluoromethanesulfonic acid and the protonated hexafluoroacetone (HFA) in situ affording 1,1,1,3,3,3‐hexafluoroisopropylidene (6F) PAE with high regioselectivity (4,4’‐DPE) and high molecular weight (≈60 kDa). Although first reported in a 1966 US Patent by DuPont using harsh conditions, improved synthetic methods or modern characterization has not been disclosed until now. Despite the presence of the 6F group, known to impart disordered morphology, this simple semi‐fluorinated PAE exhibits anomalous crystallinity with polymorphic melting points (Tm) ranging from 230–309 °C, high solubility in common organic solvents...

Research paper thumbnail of High carbon yielding and melt processable bis-ortho-diynylarene (BODA)-derived resins for rapid processing of dense carbon/carbon composites

Composites Part B: Engineering

Research paper thumbnail of Triphenylene containing blue-light emitting semi-fluorinated aryl ether polymers with excellent thermal and photostability

Materials Chemistry Frontiers

Integration of polycyclic aromatic hydrocarbon (PAH) units into semi-fluorinated polymers affords... more Integration of polycyclic aromatic hydrocarbon (PAH) units into semi-fluorinated polymers affords high thermal stability and excellent processability for potential applications in optoelectronic, gas-separation, and advanced composites.

Research paper thumbnail of Reactive Ag+ Adsorption onto Gold

Research paper thumbnail of Scattering and absorption differ drastically in their inner filter effects on fluorescence, resonance synchronous, and polarized resonance synchronous spectroscopic measurements

The Analyst, 2018

The sample inner filter effect (IFE) induces spectral distortion and affects the linearity betwee... more The sample inner filter effect (IFE) induces spectral distortion and affects the linearity between intensity and analyte concentration in fluorescence, Raman, surface enhanced Raman, and Rayleigh light scattering measurements. Existing spectrofluorometric-based measurements treat light scattering and absorption identically in their sample IFEs. Reported herein is the finding that photon scattering and absorption differ drastically in inducing the sample IFE in Stokes-shifted fluorescence (SSF) spectrum, resonance synchronous spectrum (RS2), and the polarized resonance synchronous spectrum (PRS2) measurements. Absorption with an absorption extinction as small as 0.05 imposes significant IFE on SSF, RS2, and PRS2 measurements. However, no significant IFE occurs even when the scattering extinction is as high as 0.9. For samples that both absorb and scatter light, one should decompose their UV-vis extinction spectra into absorption and scattering extinction component spectra before corr...

Research paper thumbnail of NaHS Induces Complete Nondestructive Ligand Displacement from Aggregated Gold Nanoparticles

Journal of Physical Chemistry C, 2018

Ligand displacement from gold is important for a series of gold nanoparticle (AuNP) applications.... more Ligand displacement from gold is important for a series of gold nanoparticle (AuNP) applications. Complete nondestructive removal of organothiols from aggregated AuNPs is challenging due to the strong Au–S binding, the steric hindrance imposed by ligand overlayer on AuNPs, and the narrow junctions between the neighboring AuNPs. Presented herein is finding that monohydrogen sulfide (HS–), an anionic thiol, induces complete and nondestructive removal of ligands from aggregated AuNPs. The model ligands include aliphatic (ethanethiol(ET)) and aromatic monothiols, methylbenzenethiol (MBT), organodithiol (benzenedithiol (BDT)), thioamides (mercaptobenzimidazole (MBI) and thioguanine (TG)), and nonspecific ligand adenine. The threshold HS– concentration to induce complete ligand displacement varies from 105 μM for MBI and TG to 60 mM for BDT. Unlike using HS–, complete ligand displacement does not occur when mercaptoethanol, the smallest water-soluble organothiol, is used as the incoming l...

Research paper thumbnail of Linear Extrapolation of the Analyte-Specific Light Scattering and Fluorescence Depolarization in Turbid Samples

Anisotropy and depolarization are two interconvertible parameters in fluorescence and light scatt... more Anisotropy and depolarization are two interconvertible parameters in fluorescence and light scattering spectroscopy that describe the polarization distribution of emitted and scattered photons generated with linearly polarized excitation light. Whereas anisotropy is more frequently used in fluorescence literature for studying association/dissociation of fluorophore-bearing reagents, depolarization is more popular in the light-scattering literature for investigating the effect of scatterers’ geometries and chemical compositions. Presented herein is a combined computational and experimental study of the scattering and fluorescence depolarization enhancement induced by light scattering in turbid samples. The most important finding is that sample light scattering and fluorescence depolarization increases linearly with sample light-scattering extinction. Therefore, one can extrapolate the analyte-specific scattering and fluorescence depolarization through linear curve fitting of the samp...

Research paper thumbnail of Determining the Liquid Light Scattering Cross Section and Depolarization Spectra Using Polarized Resonance Synchronous Spectroscopy

Rayleigh scattering is a universal material property because all materials have nonzero polarizab... more Rayleigh scattering is a universal material property because all materials have nonzero polarizability. Reliable quantification of the material light scattering cross section in the liquid phase and its depolarization spectra is, however, challenging due to a host of sample and instrument issues. Using the recently developed polarized resonance synchronous spectroscopic method, we reported the light scattering cross section and depolarization spectra measured for a total of 29 liquids including water, methanol, ethanol, 1-propanol, 1-butanol, dimethylformamide, carbon disulfide, dimethyl sulfoxide, hexane and two hexane isomers (3-methylpentane and 2,3-dimethylbutane), tetrahydrofuran, cyclohexane, acetonitrile, pyridine, chloromethanes including di-, tri, tetrachloromethane, acetone, benzene and eight benzene derivatives (toluene, fluorobenzene, 1,2-, 1,3-, and 1,4-difluorobenzene, chlorobenzene, 1,2- and 1,3-dichlorobenzene, and nitrobenzene). The solvent light scattering depolari...

Research paper thumbnail of Surface Plasmon Resonance, Formation Mechanism, and Surface Enhanced Raman Spectroscopy of Ag+-Stained Gold Nanoparticles

A series of recent works have demonstrated the spontaneous Ag+ adsorption onto gold surfaces. How... more A series of recent works have demonstrated the spontaneous Ag+ adsorption onto gold surfaces. However, a mechanistic understanding of the Ag+ interactions with gold has been controversial. Reported herein is a systematic study of the Ag+ binding to AuNPs using several in-situ and ex-situ measurement techniques. The time-resolved UV-vis measurements of the AuNP surface plasmonic resonance revealed that the silver adsorption proceeds through two parallel pseudo-first order processes with a time constant of 16(±2) and 1,000(±35) s, respectively. About 95% of the Ag+ adsorption proceeds through the fast adsorption process. The in-situ zeta potential data indicated that this fast Ag+ adsorption is driven primarily by the long-range electrostatic forces that lead to AuNP charge neutralization, while the time-dependent pH data shows that the slow Ag+ binding process involves proton-releasing reactions that must be driven by near-range interactions. These experimental data, together with th...

Research paper thumbnail of Kinetic spectroscopic quantification using two-step chromogenic and fluorogenic reactions: From theoretical modeling to experimental quantification of biomarkers in practical samples

Analytica Chimica Acta

Kinetic chromogenic (CG) and fluorogenic (FG) quantification deduces analyte concentration based ... more Kinetic chromogenic (CG) and fluorogenic (FG) quantification deduces analyte concentration based on the reaction rate between the CG/FG probe and its targeted molecule. Little progress has been made in the past half century in either the theory or the applications of the kinetic spectroscopic quantification methods. Current kinetic CG/FG quantification is limited only to a subset of CG/FG reactions that can be approximated as the single-step process, and more problematically, to research samples with no matrix interferences. Reported herein is a kinetic quantification model established for multistep CG/FG reactions and a proof-of-concept demonstration of direct kinetic FG quantification of biomarkers in practical samples. The kinetic spectral intensity of the CG/FG reactions with two rate-limiting steps comprises three temporal regions: an accelerating period where rate of signal change is increasingly rapid, a linear region where the rate of signal change is approximately constant, and a deceleration region where the rate of signal increase becomes progressively small. Kinetic quantification is performed through simple linear-curve-fitting of the kinetic signal in its linear time-course region. The theoretical model is validated with the dual CG/FG 2-thiobarbituric acid (TBA) and malondialdehyde (MDA) reaction. Proof-of-concept kinetic spectroscopic quantification of analytes in practical samples is demonstrated with the FG quantification of MDA in canned chicken. The only sample preparation is bench-top centrifugation followed by two sequential syringe filtrations. The total kinetic FG assay time is less than 10 min, more than 10 times more efficient than the current equilibrium-based MDA assay. The theoretical model and the measurement design strategies offered by this work should help transform the current kinetic spectroscopic quantification from a niche research tool to an indispensable technique for time-sensitive applications.

Research paper thumbnail of Triphenylene-Enchained Perfluorocyclobutyl Aryl Ether Polymers: A Modular Synthetic Route to Processable Thermoplastics Approaching Upper Limit Tg and Photostability

Research paper thumbnail of Facile displacement of citrate residues from gold nanoparticle surfaces

Journal of colloid and interface science, Jan 5, 2017

The stability of citrate-residues on gold nanoparticles (AuNPs) against ligand displacement has b... more The stability of citrate-residues on gold nanoparticles (AuNPs) against ligand displacement has been controversial. Using AuNPs synthesized with deuterated citrate in combination with in-situ surface-enhanced Raman spectroscopic (SERS) analysis, we report that both citrate-residues and solution impurities can be simultaneously adsorbed onto citrate-reduced AuNPs in solution. The citrate-residues can be readily displaced from AuNPs by organosulfur such as organothiols (RS-H), organodisuflide (R-S-S-R), and non-specific ligands including halides and adenine. Control experiments conducted on high-purity gold films sputter-coated onto silicone substrates indicate that air-borne and solvent-borne impurities rapidly contaminate the gold surfaces. Head-to-head comparison of ligand-functionalized AuNPs by in-situ SERS measurements verses those from the ex-situ X-ray photoelectron spectroscopic (XPS) measurements reveal that the impurity deposition can compromise the reliability of ex-situ X...

Research paper thumbnail of Dithiosulfindene Adsorption and Reaction on Gold Nanoparticles in Water

Research paper thumbnail of Teaching Old Polymers New Tricks: Improved Synthesis and Anomalous Crystallinity for a Lost Semi‐Fluorinated Polyaryl Ether via Interfacial Polymerization of Hexafluoroacetone Hydrate and Diphenyl Ether

Macromolecular Rapid Communications

A practical and direct electrophilic polymerization of hexafluoroacetone hydrate with diphenyl et... more A practical and direct electrophilic polymerization of hexafluoroacetone hydrate with diphenyl ether toward the preparation of semi‐fluorinated polyaryl ethers (PAE) is reported. Electrophilic aromatic substitution (EAS) polymerization under interfacial conditions with phase transfer catalyst (Aliquat 336) proceeds in trifluoromethanesulfonic anhydride by generation of trifluoromethanesulfonic acid and the protonated hexafluoroacetone (HFA) in situ affording 1,1,1,3,3,3‐hexafluoroisopropylidene (6F) PAE with high regioselectivity (4,4’‐DPE) and high molecular weight (≈60 kDa). Although first reported in a 1966 US Patent by DuPont using harsh conditions, improved synthetic methods or modern characterization has not been disclosed until now. Despite the presence of the 6F group, known to impart disordered morphology, this simple semi‐fluorinated PAE exhibits anomalous crystallinity with polymorphic melting points (Tm) ranging from 230–309 °C, high solubility in common organic solvents...

Research paper thumbnail of High carbon yielding and melt processable bis-ortho-diynylarene (BODA)-derived resins for rapid processing of dense carbon/carbon composites

Composites Part B: Engineering

Research paper thumbnail of Triphenylene containing blue-light emitting semi-fluorinated aryl ether polymers with excellent thermal and photostability

Materials Chemistry Frontiers

Integration of polycyclic aromatic hydrocarbon (PAH) units into semi-fluorinated polymers affords... more Integration of polycyclic aromatic hydrocarbon (PAH) units into semi-fluorinated polymers affords high thermal stability and excellent processability for potential applications in optoelectronic, gas-separation, and advanced composites.

Research paper thumbnail of Reactive Ag+ Adsorption onto Gold

Research paper thumbnail of Scattering and absorption differ drastically in their inner filter effects on fluorescence, resonance synchronous, and polarized resonance synchronous spectroscopic measurements

The Analyst, 2018

The sample inner filter effect (IFE) induces spectral distortion and affects the linearity betwee... more The sample inner filter effect (IFE) induces spectral distortion and affects the linearity between intensity and analyte concentration in fluorescence, Raman, surface enhanced Raman, and Rayleigh light scattering measurements. Existing spectrofluorometric-based measurements treat light scattering and absorption identically in their sample IFEs. Reported herein is the finding that photon scattering and absorption differ drastically in inducing the sample IFE in Stokes-shifted fluorescence (SSF) spectrum, resonance synchronous spectrum (RS2), and the polarized resonance synchronous spectrum (PRS2) measurements. Absorption with an absorption extinction as small as 0.05 imposes significant IFE on SSF, RS2, and PRS2 measurements. However, no significant IFE occurs even when the scattering extinction is as high as 0.9. For samples that both absorb and scatter light, one should decompose their UV-vis extinction spectra into absorption and scattering extinction component spectra before corr...

Research paper thumbnail of NaHS Induces Complete Nondestructive Ligand Displacement from Aggregated Gold Nanoparticles

Journal of Physical Chemistry C, 2018

Ligand displacement from gold is important for a series of gold nanoparticle (AuNP) applications.... more Ligand displacement from gold is important for a series of gold nanoparticle (AuNP) applications. Complete nondestructive removal of organothiols from aggregated AuNPs is challenging due to the strong Au–S binding, the steric hindrance imposed by ligand overlayer on AuNPs, and the narrow junctions between the neighboring AuNPs. Presented herein is finding that monohydrogen sulfide (HS–), an anionic thiol, induces complete and nondestructive removal of ligands from aggregated AuNPs. The model ligands include aliphatic (ethanethiol(ET)) and aromatic monothiols, methylbenzenethiol (MBT), organodithiol (benzenedithiol (BDT)), thioamides (mercaptobenzimidazole (MBI) and thioguanine (TG)), and nonspecific ligand adenine. The threshold HS– concentration to induce complete ligand displacement varies from 105 μM for MBI and TG to 60 mM for BDT. Unlike using HS–, complete ligand displacement does not occur when mercaptoethanol, the smallest water-soluble organothiol, is used as the incoming l...

Research paper thumbnail of Linear Extrapolation of the Analyte-Specific Light Scattering and Fluorescence Depolarization in Turbid Samples

Anisotropy and depolarization are two interconvertible parameters in fluorescence and light scatt... more Anisotropy and depolarization are two interconvertible parameters in fluorescence and light scattering spectroscopy that describe the polarization distribution of emitted and scattered photons generated with linearly polarized excitation light. Whereas anisotropy is more frequently used in fluorescence literature for studying association/dissociation of fluorophore-bearing reagents, depolarization is more popular in the light-scattering literature for investigating the effect of scatterers’ geometries and chemical compositions. Presented herein is a combined computational and experimental study of the scattering and fluorescence depolarization enhancement induced by light scattering in turbid samples. The most important finding is that sample light scattering and fluorescence depolarization increases linearly with sample light-scattering extinction. Therefore, one can extrapolate the analyte-specific scattering and fluorescence depolarization through linear curve fitting of the samp...

Research paper thumbnail of Determining the Liquid Light Scattering Cross Section and Depolarization Spectra Using Polarized Resonance Synchronous Spectroscopy

Rayleigh scattering is a universal material property because all materials have nonzero polarizab... more Rayleigh scattering is a universal material property because all materials have nonzero polarizability. Reliable quantification of the material light scattering cross section in the liquid phase and its depolarization spectra is, however, challenging due to a host of sample and instrument issues. Using the recently developed polarized resonance synchronous spectroscopic method, we reported the light scattering cross section and depolarization spectra measured for a total of 29 liquids including water, methanol, ethanol, 1-propanol, 1-butanol, dimethylformamide, carbon disulfide, dimethyl sulfoxide, hexane and two hexane isomers (3-methylpentane and 2,3-dimethylbutane), tetrahydrofuran, cyclohexane, acetonitrile, pyridine, chloromethanes including di-, tri, tetrachloromethane, acetone, benzene and eight benzene derivatives (toluene, fluorobenzene, 1,2-, 1,3-, and 1,4-difluorobenzene, chlorobenzene, 1,2- and 1,3-dichlorobenzene, and nitrobenzene). The solvent light scattering depolari...

Research paper thumbnail of Surface Plasmon Resonance, Formation Mechanism, and Surface Enhanced Raman Spectroscopy of Ag+-Stained Gold Nanoparticles

A series of recent works have demonstrated the spontaneous Ag+ adsorption onto gold surfaces. How... more A series of recent works have demonstrated the spontaneous Ag+ adsorption onto gold surfaces. However, a mechanistic understanding of the Ag+ interactions with gold has been controversial. Reported herein is a systematic study of the Ag+ binding to AuNPs using several in-situ and ex-situ measurement techniques. The time-resolved UV-vis measurements of the AuNP surface plasmonic resonance revealed that the silver adsorption proceeds through two parallel pseudo-first order processes with a time constant of 16(±2) and 1,000(±35) s, respectively. About 95% of the Ag+ adsorption proceeds through the fast adsorption process. The in-situ zeta potential data indicated that this fast Ag+ adsorption is driven primarily by the long-range electrostatic forces that lead to AuNP charge neutralization, while the time-dependent pH data shows that the slow Ag+ binding process involves proton-releasing reactions that must be driven by near-range interactions. These experimental data, together with th...

Research paper thumbnail of Kinetic spectroscopic quantification using two-step chromogenic and fluorogenic reactions: From theoretical modeling to experimental quantification of biomarkers in practical samples

Analytica Chimica Acta

Kinetic chromogenic (CG) and fluorogenic (FG) quantification deduces analyte concentration based ... more Kinetic chromogenic (CG) and fluorogenic (FG) quantification deduces analyte concentration based on the reaction rate between the CG/FG probe and its targeted molecule. Little progress has been made in the past half century in either the theory or the applications of the kinetic spectroscopic quantification methods. Current kinetic CG/FG quantification is limited only to a subset of CG/FG reactions that can be approximated as the single-step process, and more problematically, to research samples with no matrix interferences. Reported herein is a kinetic quantification model established for multistep CG/FG reactions and a proof-of-concept demonstration of direct kinetic FG quantification of biomarkers in practical samples. The kinetic spectral intensity of the CG/FG reactions with two rate-limiting steps comprises three temporal regions: an accelerating period where rate of signal change is increasingly rapid, a linear region where the rate of signal change is approximately constant, and a deceleration region where the rate of signal increase becomes progressively small. Kinetic quantification is performed through simple linear-curve-fitting of the kinetic signal in its linear time-course region. The theoretical model is validated with the dual CG/FG 2-thiobarbituric acid (TBA) and malondialdehyde (MDA) reaction. Proof-of-concept kinetic spectroscopic quantification of analytes in practical samples is demonstrated with the FG quantification of MDA in canned chicken. The only sample preparation is bench-top centrifugation followed by two sequential syringe filtrations. The total kinetic FG assay time is less than 10 min, more than 10 times more efficient than the current equilibrium-based MDA assay. The theoretical model and the measurement design strategies offered by this work should help transform the current kinetic spectroscopic quantification from a niche research tool to an indispensable technique for time-sensitive applications.

Research paper thumbnail of Triphenylene-Enchained Perfluorocyclobutyl Aryl Ether Polymers: A Modular Synthetic Route to Processable Thermoplastics Approaching Upper Limit Tg and Photostability

Research paper thumbnail of Facile displacement of citrate residues from gold nanoparticle surfaces

Journal of colloid and interface science, Jan 5, 2017

The stability of citrate-residues on gold nanoparticles (AuNPs) against ligand displacement has b... more The stability of citrate-residues on gold nanoparticles (AuNPs) against ligand displacement has been controversial. Using AuNPs synthesized with deuterated citrate in combination with in-situ surface-enhanced Raman spectroscopic (SERS) analysis, we report that both citrate-residues and solution impurities can be simultaneously adsorbed onto citrate-reduced AuNPs in solution. The citrate-residues can be readily displaced from AuNPs by organosulfur such as organothiols (RS-H), organodisuflide (R-S-S-R), and non-specific ligands including halides and adenine. Control experiments conducted on high-purity gold films sputter-coated onto silicone substrates indicate that air-borne and solvent-borne impurities rapidly contaminate the gold surfaces. Head-to-head comparison of ligand-functionalized AuNPs by in-situ SERS measurements verses those from the ex-situ X-ray photoelectron spectroscopic (XPS) measurements reveal that the impurity deposition can compromise the reliability of ex-situ X...

Research paper thumbnail of Dithiosulfindene Adsorption and Reaction on Gold Nanoparticles in Water