spin_sdk.llm API documentation (original) (raw)
Module spin_sdk.llm
Module for working with the Spin large language model API
def generate_embeddings(model: str, text: Sequence[str]) ‑> [EmbeddingsResult](wit/imports/llm.html#spin%5Fsdk.wit.imports.llm.EmbeddingsResult "spin_sdk.wit.imports.llm.EmbeddingsResult")
def infer(model: str, prompt: str) ‑> [InferencingResult](wit/imports/llm.html#spin%5Fsdk.wit.imports.llm.InferencingResult "spin_sdk.wit.imports.llm.InferencingResult")
def infer_with_options(model: str, prompt: str, options: [InferencingParams](#spin%5Fsdk.llm.InferencingParams "spin_sdk.llm.InferencingParams") | None) ‑> [InferencingResult](wit/imports/llm.html#spin%5Fsdk.wit.imports.llm.InferencingResult "spin_sdk.wit.imports.llm.InferencingResult")
class InferencingParams (max_tokens: int = 100, repeat_penalty: float = 1.1, repeat_penalty_last_n_token_count: int = 64, temperature: float = 0.8, top_k: int = 40, top_p: float = 0.9)
InferencingParams(max_tokens: int = 100, repeat_penalty: float = 1.1, repeat_penalty_last_n_token_count: int = 64, temperature: float = 0.8, top_k: int = 40, top_p: float = 0.9)
Expand source code
@dataclass
class InferencingParams:
max_tokens: int = 100
repeat_penalty: float = 1.1
repeat_penalty_last_n_token_count: int = 64
temperature: float = 0.8
top_k: int = 40
top_p: float = 0.9
Class variables
var max_tokens : int
var repeat_penalty : float
var repeat_penalty_last_n_token_count : int
var temperature : float
var top_k : int
var top_p : float