J. Den Herder | SRON, Netherlands Institute for Space Research (original) (raw)
Papers by J. Den Herder
The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the Me... more The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the MeV gamma ray range. At present it is performing a complete sky survey. In later phases of the mission, selected celestial objects will be studied in more detail. Targets of special interest in the COMPTEL energy range are radio pulsars, X-ray binaries, novae, supernova remnants,
Monthly Notices of the Royal Astronomical Society, 2009
Synchrotron X-ray emission components were recently detected in many young supernova remnants (SN... more Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class -SN1006, RXJ1713.72-3946, Vela Jr, and others -that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50%. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this "twinkling" polarized X-ray emission of SNRs depend strongly on the magnetic-field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic-field characteristics and high-energy particle acceleration in SNRs.
Astronomy and Astrophysics, 2003
We investigate a sample of 14 clusters of galaxies observed with XMM-Newton in a search for soft ... more We investigate a sample of 14 clusters of galaxies observed with XMM-Newton in a search for soft X-ray excess emission. In five of these clusters a significant soft excess is evident. This soft X-ray excess is compared with the thermal emission from both the hot intracluster gas and any cooling (flow) gas that may be present. A warm (kT =0.2 keV), extended (several Mpc), plasma component is particularly clear in the outer parts of the cluster, where the normal cluster X-ray emission is weak. This warm component causes both a thermal soft X-ray excess at low energies (below 0.4-0.5 keV), as well as O VII line emission with a redshift consistent with a cluster origin, and not easily interpreted as Galactic foreground emission. The intensity of this component is commensurate with what has been measured before with the ROSAT PSPC in the 1/4 keV band. We attribute this component to emission from intercluster filaments of the Warm-Hot Intergalactic Medium in the vicinity of these clusters. For the central regions of clusters the detection of lines in the soft X-ray spectrum is more difficult, due to the predominance of the X-ray emitting hot plasma there, hence we cannot discriminate between the thermal and nonthermal origin of the soft excess, leaving several options open. These include thermal emission from warm filaments seen in projection in front of or behind the cluster center, thermal or nonthermal emission in the cluster core itself related to magnetic reconnection, or Inverse Compton emission from the cosmic microwave background on relativistic electrons.
Astronomy and Astrophysics, 2001
We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the... more We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the famous CAL 83 in the Large Magellanic Cloud. The spectrum was obtained with the Reflection Grating Spectrometer on XMM-Newton during the Calibration/Performance Verification phase of the observatory. The spectrum covers the range 20-40Å at an approximately constant resolution of 0.05Å, and shows very significant, intricate detail, that is very sensitive to the physical properties of the object. We present the results of an initial investigation of the spectrum, from which we draw the conclusion that the spectral structure is probably dominated by numerous absorption features due to transitions in the L-shells of the mid-Z elements and the M-shell of Fe, in addition to a few strong K-shell features due to CNO.
Advances in Space Research, 1993
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At pre... more COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demostrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identif~rthe plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26M has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 199iT have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.
COMPTEL is presently completing the first full sky survey in MeV gamma-ray astronomy (0.7 to 30 M... more COMPTEL is presently completing the first full sky survey in MeV gamma-ray astronomy (0.7 to 30 MeV). An overview of initial results from the survey is given: among these are the observations of the Crab and Vela pulsars with unprecedented accuracy, the observation of the black hole candidates Cyg X-1 and Nova Persei 1992, an analysis of the diffuse Galactic continuum emission from the Galactic center region, the broad scale distribution of the 1.8 MeV line from radioactive 26Al, upper limits on gamma-ray line emission from SN 1991T, observations of the three quasars 3C273, 3C279 and PKS 0528+134 and the radio galaxy Cen A, measurements of energy spectra, time histories and locations of a number of cosmic gamma-ray bursts, and gamma-ray and neutron emission from solar flares.
The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the Me... more The imaging Compton telescope (COMPTEL) is the first imaging telescope in space to explore the MeV gamma ray range. At present it is performing a complete sky survey. In later phases of the mission, selected celestial objects will be studied in more detail. Targets of special interest in the COMPTEL energy range are radio pulsars, X-ray binaries, novae, supernova remnants,
Monthly Notices of the Royal Astronomical Society, 2009
Synchrotron X-ray emission components were recently detected in many young supernova remnants (SN... more Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class -SN1006, RXJ1713.72-3946, Vela Jr, and others -that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50%. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this "twinkling" polarized X-ray emission of SNRs depend strongly on the magnetic-field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic-field characteristics and high-energy particle acceleration in SNRs.
Astronomy and Astrophysics, 2003
We investigate a sample of 14 clusters of galaxies observed with XMM-Newton in a search for soft ... more We investigate a sample of 14 clusters of galaxies observed with XMM-Newton in a search for soft X-ray excess emission. In five of these clusters a significant soft excess is evident. This soft X-ray excess is compared with the thermal emission from both the hot intracluster gas and any cooling (flow) gas that may be present. A warm (kT =0.2 keV), extended (several Mpc), plasma component is particularly clear in the outer parts of the cluster, where the normal cluster X-ray emission is weak. This warm component causes both a thermal soft X-ray excess at low energies (below 0.4-0.5 keV), as well as O VII line emission with a redshift consistent with a cluster origin, and not easily interpreted as Galactic foreground emission. The intensity of this component is commensurate with what has been measured before with the ROSAT PSPC in the 1/4 keV band. We attribute this component to emission from intercluster filaments of the Warm-Hot Intergalactic Medium in the vicinity of these clusters. For the central regions of clusters the detection of lines in the soft X-ray spectrum is more difficult, due to the predominance of the X-ray emitting hot plasma there, hence we cannot discriminate between the thermal and nonthermal origin of the soft excess, leaving several options open. These include thermal emission from warm filaments seen in projection in front of or behind the cluster center, thermal or nonthermal emission in the cluster core itself related to magnetic reconnection, or Inverse Compton emission from the cosmic microwave background on relativistic electrons.
Astronomy and Astrophysics, 2001
We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the... more We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the famous CAL 83 in the Large Magellanic Cloud. The spectrum was obtained with the Reflection Grating Spectrometer on XMM-Newton during the Calibration/Performance Verification phase of the observatory. The spectrum covers the range 20-40Å at an approximately constant resolution of 0.05Å, and shows very significant, intricate detail, that is very sensitive to the physical properties of the object. We present the results of an initial investigation of the spectrum, from which we draw the conclusion that the spectral structure is probably dominated by numerous absorption features due to transitions in the L-shells of the mid-Z elements and the M-shell of Fe, in addition to a few strong K-shell features due to CNO.
Advances in Space Research, 1993
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At pre... more COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demostrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identif~rthe plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26M has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 199iT have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.
COMPTEL is presently completing the first full sky survey in MeV gamma-ray astronomy (0.7 to 30 M... more COMPTEL is presently completing the first full sky survey in MeV gamma-ray astronomy (0.7 to 30 MeV). An overview of initial results from the survey is given: among these are the observations of the Crab and Vela pulsars with unprecedented accuracy, the observation of the black hole candidates Cyg X-1 and Nova Persei 1992, an analysis of the diffuse Galactic continuum emission from the Galactic center region, the broad scale distribution of the 1.8 MeV line from radioactive 26Al, upper limits on gamma-ray line emission from SN 1991T, observations of the three quasars 3C273, 3C279 and PKS 0528+134 and the radio galaxy Cen A, measurements of energy spectra, time histories and locations of a number of cosmic gamma-ray bursts, and gamma-ray and neutron emission from solar flares.