Beisi Xu | St Jude Childrens research Hospital (original) (raw)

Papers by Beisi Xu

Research paper thumbnail of Acute depletion of CTCF rewires genome-wide chromatin accessibility

Genome Biology, 2021

Background The transcription factor CTCF appears indispensable in defining topologically associat... more Background The transcription factor CTCF appears indispensable in defining topologically associated domain boundaries and maintaining chromatin loop structures within these domains, supported by numerous functional studies. However, acute depletion of CTCF globally reduces chromatin interactions but does not significantly alter transcription. Results Here, we systematically integrate multi-omics data including ATAC-seq, RNA-seq, WGBS, Hi-C, Cut&Run, and CRISPR-Cas9 survival dropout screens, and time-solved deep proteomic and phosphoproteomic analyses in cells carrying auxin-induced degron at endogenous CTCF locus. Acute CTCF protein degradation markedly rewires genome-wide chromatin accessibility. Increased accessible chromatin regions are frequently located adjacent to CTCF-binding sites at promoter regions and insulator sites associated with enhanced transcription of nearby genes. In addition, we use CTCF-associated multi-omics data to establish a combinatorial data analysis pipel...

Research paper thumbnail of PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands

Life Science Alliance, 2021

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counterac... more DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide eviden...

Research paper thumbnail of UTX/KDM6A suppresses AP-1 and a gliogenesis program during neural differentiation of human pluripotent stem cells

Epigenetics & Chromatin, 2020

Background UTX/KDM6A is known to interact and influence multiple different chromatin modifiers to... more Background UTX/KDM6A is known to interact and influence multiple different chromatin modifiers to promote an open chromatin environment to facilitate gene activation, but its molecular activities in developmental gene regulation remain unclear. Results We report that in human neural stem cells, UTX binding correlates with both promotion and suppression of gene expression. These activities enable UTX to modulate neural stem cell self-renewal, promote neurogenesis, and suppress gliogenesis. In neural stem cells, UTX has a less influence over histone H3 lysine 27 and lysine 4 methylation but more predominantly affects histone H3 lysine 27 acetylation and chromatin accessibility. Furthermore, UTX suppresses components of AP-1 and, in turn, a gliogenesis program. Conclusions Our findings revealed that UTX coordinates dualistic gene regulation to govern neural stem cell properties and neurogenesis–gliogenesis switch.

Research paper thumbnail of Author response: Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen

Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KM... more Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.

Research paper thumbnail of KDM6B promotes oncogenic CDK4/6-pRB-E2F pathway via maintaining enhancer activation in high-risk neuroblastoma

ABSTRACTThe H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and essenti... more ABSTRACTThe H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and essential to neuroblastoma cell survival. While the KDM6B inhibitor, GSK-J4, has shown activity in in vitro and in vivo preclinical models, the mechanism of action remains poorly defined. We demonstrate that genetic and pharmacologic inhibition of KDM6B downregulate the pRB-E2F transcriptome and MYCN expression. Chemical genetics analyses show that a high E2F transcriptome is positively correlated with sensitivity of cancer cells to the KDM6 inhibitor GSK-J4. Mechanistically, inhibition of KDM6B activity reduces the chromatin accessibility of E2F target genes and MYCN. GSK-J4 alters distribution of H3K27me3 and broadly represses the enhancer mark H3K4me1, which may consequently disrupt the long-range chromatin interaction of E2F target genes. KDM6B inhibition phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout not only con...

Research paper thumbnail of MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors

Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers... more Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework that uses convolutional neural networks to infer promoter activities (H3K4me3 and H3K27ac enrichment) from DNA methylation patterns for individual genes. Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers, including both solid and hematologic malignant neoplasms.

Research paper thumbnail of MYCN Amplification and ATRX Mutations are Incompatible in Neuroblastoma

SUMMARYAggressive cancers often have activating mutations in growth-controlling oncogenes and ina... more SUMMARYAggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX–histone chaperone complex and that induced by MYCN-mediated metabolic reprogramming leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncoge...

Research paper thumbnail of The Nucleome of Developing Murine Rod Photoreceptors

The nuclei of rod photoreceptors in mice and other nocturnal species have an unusual inverted chr... more The nuclei of rod photoreceptors in mice and other nocturnal species have an unusual inverted chromatin structure: the heterochromatin is centrally located to help focus light and improve photosensitivity. To better understand this unique nuclear organization, we performed ultra-deep Hi-C analysis on murine retina at 3 stages of development and on purified rod photoreceptors. Predicted looping interactions from the Hi-C data were validated with fluorescence in situ hybridization (FISH). We discovered that a subset of retinal genes that are important for retinal development, cancer, and stress response are localized to the facultative heterochromatin domain. We also used machine learning to develop an algorithm based on our chromatin Hidden Markov Modeling (chromHMM) of retinal development to predict heterochromatin domains and study their dynamics during retinogenesis. FISH data for 264 genomic loci were used to train and validate the algorithm. The integrated data were then used to...

Research paper thumbnail of Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia

Nature Communications, 2019

IGH@ proto-oncogene translocation is a common oncogenic event in lymphoid lineage cancers such as... more IGH@ proto-oncogene translocation is a common oncogenic event in lymphoid lineage cancers such as BALL , lymphoma and multiple myeloma. Here, to investigate the interplay between IGH@ proto-oncogene translocation and IGH allelic exclusion, we perform long-read whole-genome and transcriptome sequencing along with epigenetic and 3D genome profiling of Nalm6, an IGH-DUX4 positive BALL cell line. We detect significant allelic imbalance on the wild-type over the IGH-DUX4 haplotype in expression and epigenetic data, showing IGH-DUX4 translocation occurs on the silenced IGH allele. In vitro, this reduces the oncogenic stress of DUX4 high-level expression. Moreover, patient samples of IGH-DUX4 BALL have similar expression profile and IGH breakpoints as Nalm6, suggesting a common mechanism to allow optimal dosage of non-toxic DUX4 expression.

Research paper thumbnail of Acute depletion of CTCF directly affects MYC regulation through loss of enhancer–promoter looping

Nucleic Acids Research, 2019

Numerous pieces of evidence support the complex, 3D spatial organization of the genome dictates g... more Numerous pieces of evidence support the complex, 3D spatial organization of the genome dictates gene expression. CTCF is essential to define topologically associated domain boundaries and to facilitate the formation of insulated chromatin loop structures. To understand CTCF’s direct role in global transcriptional regulation, we integrated the miniAID-mClover3 cassette to the endogenous CTCF locus in a human pediatric B-ALL cell line, SEM, and an immortal erythroid precursor cell line, HUDEP-2, to allow for acute depletion of CTCF protein by the auxin-inducible degron system. In SEM cells, CTCF loss notably disrupted intra-TAD loops and TAD integrity in concurrence with a reduction in CTCF-binding affinity, while showing no perturbation to nuclear compartment integrity. Strikingly, the overall effect of CTCF’s loss on transcription was minimal. Whole transcriptome analysis showed hundreds of genes differentially expressed in CTCF-depleted cells, among which MYC and a number of MYC ta...

Research paper thumbnail of Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression

Cancer Cell, 2018

Highlights d H3.3 K27M mutation enhances neural stem cell self-renewal d Neonatal PDGFRa activati... more Highlights d H3.3 K27M mutation enhances neural stem cell self-renewal d Neonatal PDGFRa activation and Trp53 loss induces supratentorial and brainstem glioma d H3.3 K27M preferentially accelerates hindbrain tumorigenesis d H3.3 K27M drives bivalent gene activation associated with neurodevelopment in DIPG

Research paper thumbnail of The Hippo Pathway Prevents YAP/TAZ-Driven Hypertranscription and Controls Neural Progenitor Number

Developmental Cell, 2018

Highlights d Loss of Hippo pathway LATS kinase leads to YAP/TAZ-driven global hypertranscription ... more Highlights d Loss of Hippo pathway LATS kinase leads to YAP/TAZ-driven global hypertranscription d YAP/TAZ-driven hypertranscription upregulates many growth and proliferation genes d Hypertranscription impairs neural progenitor differentiation and causes apoptosis d Cell-number-normalized methods are required to detect global hypertranscription

Research paper thumbnail of The genetic basis and cell of origin of mixed phenotype acute leukaemia

Nature, Oct 12, 2018

Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymph... more Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, thes...

Research paper thumbnail of Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses

Cancer cell, Jan 16, 2018

Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being i... more Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being incorporated into practice. Other therapeutic vulnerabilities resulting from changes in gene expression due to tumor specific epigenetic perturbations are progressively being recognized. These genomic and epigenomic changes are ultimately manifest in the tumor proteome and phosphoproteome. We integrated transcriptomic, epigenomic, and proteomic/phosphoproteomic data to elucidate the cellular origins and therapeutic vulnerabilities of rhabdomyosarcoma (RMS). We discovered that alveolar RMS occurs further along the developmental program than embryonal RMS. We also identified deregulation of the RAS/MEK/ERK/CDK4/6, G/M, and unfolded protein response pathways through our integrated analysis. Comprehensive preclinical testing revealed that targeting the WEE1 kinase in the G/M pathway is the most effective approach in vivo for high-risk RMS.

Research paper thumbnail of Mouse medulloblastoma driven by CRISPR activation of cellular Myc

Scientific reports, Jan 7, 2018

MYC-driven Group 3 (G3) medulloblastoma (MB) is the most aggressive of four molecular subgroups c... more MYC-driven Group 3 (G3) medulloblastoma (MB) is the most aggressive of four molecular subgroups classified by transcriptome, genomic landscape and clinical outcomes. Mouse models that recapitulate human G3 MB all rely on retroviral vector-induced Myc expression driven by viral regulatory elements (Retro-Myc tumors). We used nuclease-deficient CRISPR/dCas9-based gene activation with combinatorial single guide RNAs (sgRNAs) to enforce transcription of endogenous Myc in Trp53-null neurospheres that were orthotopically transplanted into the brains of naïve animals. Three combined sgRNAs linked to dCas9-VP160 induced cellular Myc expression and large cell anaplastic MBs (CRISPR-Myc tumors) which recapitulated the molecular characteristics of mouse and human G3 MBs. The BET inhibitor JQ1 suppressed MYC expression in a human G3 MB cell line (HD-MB03) and CRISPR-Myc, but not in Retro-Myc MBs. This G3 MB mouse model in which Myc expression is regulated by its own promoter will facilitate pre...

Research paper thumbnail of Retinal Cell Type DNA Methylation and Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid Cultures

Cell reports, Jan 6, 2018

Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 ... more Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 (Pou5f1), Klf4, Sox3, and Myc. Many of these induced pluripotent stem cells (iPSCs) retain memory, in terms of DNA methylation and histone modifications (epigenetic memory), of their cellular origins, and this may bias subsequent differentiation. Neurons are difficult to reprogram, and there has not been a systematic side-by-side characterization of reprogramming efficiency or epigenetic memory across different neuronal subtypes. Here, we compare reprogramming efficiency of five different retinal cell types at two different stages of development. Retinal differentiation from each iPSC line was measured using a quantitative standardized scoring system called STEM-RET and compared to the epigenetic memory. Neurons with the lowest reprogramming efficiency produced iPSC lines with the best retinal differentiation and were more likely to retain epigenetic memory of their cellular origins. In ...

Research paper thumbnail of c-MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification

Cancer discovery, Jan 28, 2017

The amplified MYCN gene serves as an oncogenic driver in approximately 20% of high-risk pediatric... more The amplified MYCN gene serves as an oncogenic driver in approximately 20% of high-risk pediatric neuroblastomas. Here we show that the family member c-MYC is a potent transforming gene in a separate subset of high-risk neuroblastoma cases (~10%), based on (i) its upregulation by focal enhancer amplification or genomic rearrangements leading to enhancer hijacking, and (ii) its ability to transform neuroblastoma precursor cells in a transgenic animal model. The aberrant regulatory elements associated with oncogenic c-MYC activation include focally amplified distal enhancers and translocation of highly active enhancers from other genes to within topologically associating domains containing the c-MYC gene locus. The clinical outcome for patients with high levels of c-MYC expression is virtually identical to that of patients with amplification of the MYCN gene, a known high-risk feature of this disease. Together, these findings establish c-MYC as a bona fide oncogene in a clinically sig...

Research paper thumbnail of Orthotopic patient-derived xenografts of paediatric solid tumours

Nature, Sep 30, 2017

Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the ... more Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30%. To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy. Tumour specimens were received from 168 patients, and 67 orthotopic patient-derived xenografts were established for 12 types of cancer. The origins of the patient-derived xenograft tumours were reflected in their gene-expression profiles and epigenomes. Genomic profiling of the tumours, including detailed clonal analysis, was performed to determine whether the clonal population in the xenograft recapitulated the patient's tumour. We identified several drug vulnerabilities and showed that the combination of a WEE1 inhibitor (AZD1775), irinotecan, and ...

Research paper thumbnail of Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression

Molecular Immunology, 2016

Females and males differ in antibody isotype expression patterns and in immune responses to forei... more Females and males differ in antibody isotype expression patterns and in immune responses to foreign-and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of ER response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the J H cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3′ regulatory region (3′RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may

Research paper thumbnail of Deregulation of DUX4 and ERG in acute lymphoblastic leukemia

Nature genetics, Dec 24, 2016

Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute l... more Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL). Here we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG is a hallmark of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt uses a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivation domains of ERG, but it inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia in which DUX4 deregulation results in loss of function of ERG, either by deletion or induced expression of an isoform that is a dominant-negative inhibi...

Research paper thumbnail of Acute depletion of CTCF rewires genome-wide chromatin accessibility

Genome Biology, 2021

Background The transcription factor CTCF appears indispensable in defining topologically associat... more Background The transcription factor CTCF appears indispensable in defining topologically associated domain boundaries and maintaining chromatin loop structures within these domains, supported by numerous functional studies. However, acute depletion of CTCF globally reduces chromatin interactions but does not significantly alter transcription. Results Here, we systematically integrate multi-omics data including ATAC-seq, RNA-seq, WGBS, Hi-C, Cut&Run, and CRISPR-Cas9 survival dropout screens, and time-solved deep proteomic and phosphoproteomic analyses in cells carrying auxin-induced degron at endogenous CTCF locus. Acute CTCF protein degradation markedly rewires genome-wide chromatin accessibility. Increased accessible chromatin regions are frequently located adjacent to CTCF-binding sites at promoter regions and insulator sites associated with enhanced transcription of nearby genes. In addition, we use CTCF-associated multi-omics data to establish a combinatorial data analysis pipel...

Research paper thumbnail of PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands

Life Science Alliance, 2021

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counterac... more DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide eviden...

Research paper thumbnail of UTX/KDM6A suppresses AP-1 and a gliogenesis program during neural differentiation of human pluripotent stem cells

Epigenetics & Chromatin, 2020

Background UTX/KDM6A is known to interact and influence multiple different chromatin modifiers to... more Background UTX/KDM6A is known to interact and influence multiple different chromatin modifiers to promote an open chromatin environment to facilitate gene activation, but its molecular activities in developmental gene regulation remain unclear. Results We report that in human neural stem cells, UTX binding correlates with both promotion and suppression of gene expression. These activities enable UTX to modulate neural stem cell self-renewal, promote neurogenesis, and suppress gliogenesis. In neural stem cells, UTX has a less influence over histone H3 lysine 27 and lysine 4 methylation but more predominantly affects histone H3 lysine 27 acetylation and chromatin accessibility. Furthermore, UTX suppresses components of AP-1 and, in turn, a gliogenesis program. Conclusions Our findings revealed that UTX coordinates dualistic gene regulation to govern neural stem cell properties and neurogenesis–gliogenesis switch.

Research paper thumbnail of Author response: Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen

Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KM... more Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.

Research paper thumbnail of KDM6B promotes oncogenic CDK4/6-pRB-E2F pathway via maintaining enhancer activation in high-risk neuroblastoma

ABSTRACTThe H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and essenti... more ABSTRACTThe H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and essential to neuroblastoma cell survival. While the KDM6B inhibitor, GSK-J4, has shown activity in in vitro and in vivo preclinical models, the mechanism of action remains poorly defined. We demonstrate that genetic and pharmacologic inhibition of KDM6B downregulate the pRB-E2F transcriptome and MYCN expression. Chemical genetics analyses show that a high E2F transcriptome is positively correlated with sensitivity of cancer cells to the KDM6 inhibitor GSK-J4. Mechanistically, inhibition of KDM6B activity reduces the chromatin accessibility of E2F target genes and MYCN. GSK-J4 alters distribution of H3K27me3 and broadly represses the enhancer mark H3K4me1, which may consequently disrupt the long-range chromatin interaction of E2F target genes. KDM6B inhibition phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout not only con...

Research paper thumbnail of MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors

Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers... more Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework that uses convolutional neural networks to infer promoter activities (H3K4me3 and H3K27ac enrichment) from DNA methylation patterns for individual genes. Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers, including both solid and hematologic malignant neoplasms.

Research paper thumbnail of MYCN Amplification and ATRX Mutations are Incompatible in Neuroblastoma

SUMMARYAggressive cancers often have activating mutations in growth-controlling oncogenes and ina... more SUMMARYAggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX–histone chaperone complex and that induced by MYCN-mediated metabolic reprogramming leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncoge...

Research paper thumbnail of The Nucleome of Developing Murine Rod Photoreceptors

The nuclei of rod photoreceptors in mice and other nocturnal species have an unusual inverted chr... more The nuclei of rod photoreceptors in mice and other nocturnal species have an unusual inverted chromatin structure: the heterochromatin is centrally located to help focus light and improve photosensitivity. To better understand this unique nuclear organization, we performed ultra-deep Hi-C analysis on murine retina at 3 stages of development and on purified rod photoreceptors. Predicted looping interactions from the Hi-C data were validated with fluorescence in situ hybridization (FISH). We discovered that a subset of retinal genes that are important for retinal development, cancer, and stress response are localized to the facultative heterochromatin domain. We also used machine learning to develop an algorithm based on our chromatin Hidden Markov Modeling (chromHMM) of retinal development to predict heterochromatin domains and study their dynamics during retinogenesis. FISH data for 264 genomic loci were used to train and validate the algorithm. The integrated data were then used to...

Research paper thumbnail of Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia

Nature Communications, 2019

IGH@ proto-oncogene translocation is a common oncogenic event in lymphoid lineage cancers such as... more IGH@ proto-oncogene translocation is a common oncogenic event in lymphoid lineage cancers such as BALL , lymphoma and multiple myeloma. Here, to investigate the interplay between IGH@ proto-oncogene translocation and IGH allelic exclusion, we perform long-read whole-genome and transcriptome sequencing along with epigenetic and 3D genome profiling of Nalm6, an IGH-DUX4 positive BALL cell line. We detect significant allelic imbalance on the wild-type over the IGH-DUX4 haplotype in expression and epigenetic data, showing IGH-DUX4 translocation occurs on the silenced IGH allele. In vitro, this reduces the oncogenic stress of DUX4 high-level expression. Moreover, patient samples of IGH-DUX4 BALL have similar expression profile and IGH breakpoints as Nalm6, suggesting a common mechanism to allow optimal dosage of non-toxic DUX4 expression.

Research paper thumbnail of Acute depletion of CTCF directly affects MYC regulation through loss of enhancer–promoter looping

Nucleic Acids Research, 2019

Numerous pieces of evidence support the complex, 3D spatial organization of the genome dictates g... more Numerous pieces of evidence support the complex, 3D spatial organization of the genome dictates gene expression. CTCF is essential to define topologically associated domain boundaries and to facilitate the formation of insulated chromatin loop structures. To understand CTCF’s direct role in global transcriptional regulation, we integrated the miniAID-mClover3 cassette to the endogenous CTCF locus in a human pediatric B-ALL cell line, SEM, and an immortal erythroid precursor cell line, HUDEP-2, to allow for acute depletion of CTCF protein by the auxin-inducible degron system. In SEM cells, CTCF loss notably disrupted intra-TAD loops and TAD integrity in concurrence with a reduction in CTCF-binding affinity, while showing no perturbation to nuclear compartment integrity. Strikingly, the overall effect of CTCF’s loss on transcription was minimal. Whole transcriptome analysis showed hundreds of genes differentially expressed in CTCF-depleted cells, among which MYC and a number of MYC ta...

Research paper thumbnail of Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression

Cancer Cell, 2018

Highlights d H3.3 K27M mutation enhances neural stem cell self-renewal d Neonatal PDGFRa activati... more Highlights d H3.3 K27M mutation enhances neural stem cell self-renewal d Neonatal PDGFRa activation and Trp53 loss induces supratentorial and brainstem glioma d H3.3 K27M preferentially accelerates hindbrain tumorigenesis d H3.3 K27M drives bivalent gene activation associated with neurodevelopment in DIPG

Research paper thumbnail of The Hippo Pathway Prevents YAP/TAZ-Driven Hypertranscription and Controls Neural Progenitor Number

Developmental Cell, 2018

Highlights d Loss of Hippo pathway LATS kinase leads to YAP/TAZ-driven global hypertranscription ... more Highlights d Loss of Hippo pathway LATS kinase leads to YAP/TAZ-driven global hypertranscription d YAP/TAZ-driven hypertranscription upregulates many growth and proliferation genes d Hypertranscription impairs neural progenitor differentiation and causes apoptosis d Cell-number-normalized methods are required to detect global hypertranscription

Research paper thumbnail of The genetic basis and cell of origin of mixed phenotype acute leukaemia

Nature, Oct 12, 2018

Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymph... more Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, thes...

Research paper thumbnail of Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses

Cancer cell, Jan 16, 2018

Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being i... more Personalized cancer therapy targeting somatic mutations in patient tumors is increasingly being incorporated into practice. Other therapeutic vulnerabilities resulting from changes in gene expression due to tumor specific epigenetic perturbations are progressively being recognized. These genomic and epigenomic changes are ultimately manifest in the tumor proteome and phosphoproteome. We integrated transcriptomic, epigenomic, and proteomic/phosphoproteomic data to elucidate the cellular origins and therapeutic vulnerabilities of rhabdomyosarcoma (RMS). We discovered that alveolar RMS occurs further along the developmental program than embryonal RMS. We also identified deregulation of the RAS/MEK/ERK/CDK4/6, G/M, and unfolded protein response pathways through our integrated analysis. Comprehensive preclinical testing revealed that targeting the WEE1 kinase in the G/M pathway is the most effective approach in vivo for high-risk RMS.

Research paper thumbnail of Mouse medulloblastoma driven by CRISPR activation of cellular Myc

Scientific reports, Jan 7, 2018

MYC-driven Group 3 (G3) medulloblastoma (MB) is the most aggressive of four molecular subgroups c... more MYC-driven Group 3 (G3) medulloblastoma (MB) is the most aggressive of four molecular subgroups classified by transcriptome, genomic landscape and clinical outcomes. Mouse models that recapitulate human G3 MB all rely on retroviral vector-induced Myc expression driven by viral regulatory elements (Retro-Myc tumors). We used nuclease-deficient CRISPR/dCas9-based gene activation with combinatorial single guide RNAs (sgRNAs) to enforce transcription of endogenous Myc in Trp53-null neurospheres that were orthotopically transplanted into the brains of naïve animals. Three combined sgRNAs linked to dCas9-VP160 induced cellular Myc expression and large cell anaplastic MBs (CRISPR-Myc tumors) which recapitulated the molecular characteristics of mouse and human G3 MBs. The BET inhibitor JQ1 suppressed MYC expression in a human G3 MB cell line (HD-MB03) and CRISPR-Myc, but not in Retro-Myc MBs. This G3 MB mouse model in which Myc expression is regulated by its own promoter will facilitate pre...

Research paper thumbnail of Retinal Cell Type DNA Methylation and Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid Cultures

Cell reports, Jan 6, 2018

Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 ... more Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 (Pou5f1), Klf4, Sox3, and Myc. Many of these induced pluripotent stem cells (iPSCs) retain memory, in terms of DNA methylation and histone modifications (epigenetic memory), of their cellular origins, and this may bias subsequent differentiation. Neurons are difficult to reprogram, and there has not been a systematic side-by-side characterization of reprogramming efficiency or epigenetic memory across different neuronal subtypes. Here, we compare reprogramming efficiency of five different retinal cell types at two different stages of development. Retinal differentiation from each iPSC line was measured using a quantitative standardized scoring system called STEM-RET and compared to the epigenetic memory. Neurons with the lowest reprogramming efficiency produced iPSC lines with the best retinal differentiation and were more likely to retain epigenetic memory of their cellular origins. In ...

Research paper thumbnail of c-MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification

Cancer discovery, Jan 28, 2017

The amplified MYCN gene serves as an oncogenic driver in approximately 20% of high-risk pediatric... more The amplified MYCN gene serves as an oncogenic driver in approximately 20% of high-risk pediatric neuroblastomas. Here we show that the family member c-MYC is a potent transforming gene in a separate subset of high-risk neuroblastoma cases (~10%), based on (i) its upregulation by focal enhancer amplification or genomic rearrangements leading to enhancer hijacking, and (ii) its ability to transform neuroblastoma precursor cells in a transgenic animal model. The aberrant regulatory elements associated with oncogenic c-MYC activation include focally amplified distal enhancers and translocation of highly active enhancers from other genes to within topologically associating domains containing the c-MYC gene locus. The clinical outcome for patients with high levels of c-MYC expression is virtually identical to that of patients with amplification of the MYCN gene, a known high-risk feature of this disease. Together, these findings establish c-MYC as a bona fide oncogene in a clinically sig...

Research paper thumbnail of Orthotopic patient-derived xenografts of paediatric solid tumours

Nature, Sep 30, 2017

Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the ... more Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30%. To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy. Tumour specimens were received from 168 patients, and 67 orthotopic patient-derived xenografts were established for 12 types of cancer. The origins of the patient-derived xenograft tumours were reflected in their gene-expression profiles and epigenomes. Genomic profiling of the tumours, including detailed clonal analysis, was performed to determine whether the clonal population in the xenograft recapitulated the patient's tumour. We identified several drug vulnerabilities and showed that the combination of a WEE1 inhibitor (AZD1775), irinotecan, and ...

Research paper thumbnail of Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression

Molecular Immunology, 2016

Females and males differ in antibody isotype expression patterns and in immune responses to forei... more Females and males differ in antibody isotype expression patterns and in immune responses to foreign-and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of ER response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the J H cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3′ regulatory region (3′RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may

Research paper thumbnail of Deregulation of DUX4 and ERG in acute lymphoblastic leukemia

Nature genetics, Dec 24, 2016

Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute l... more Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL). Here we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG is a hallmark of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt uses a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivation domains of ERG, but it inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia in which DUX4 deregulation results in loss of function of ERG, either by deletion or induced expression of an isoform that is a dominant-negative inhibi...