Victoria Wagner | University of St. Thomas, Houston (original) (raw)
Supervisors: Dr. Arturo Hernandez
less
Uploads
Papers by Victoria Wagner
Experimental Brain Research
Neurophotonics, 2020
Significance: Deficits in sensorimotor function in persons with type II diabetes mellitus (PwDM) ... more Significance: Deficits in sensorimotor function in persons with type II diabetes mellitus (PwDM) have traditionally been considered a result of peripheral nerve damage. Emerging evidence has suggested that factors outside of nerve damage due to type II diabetes mellitus, such as impaired hemodynamic function, contribute significantly to both sensory and motor deficits in PwDM. Aim: The focus of the current study was to evaluate functional cortical hemodynamic activity during sensory and motor tasks in PwDM. Approach: Functional near-infrared spectroscopy was used to monitor oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) across the cortex during sensory and motor tasks involving the hands. Results: Decline in HbO across sensory and motor regions of interest was found in PwDM with simultaneous deficits in manual motor tasks, providing the first evidence of functional cortical hemodynamic activity deficits relating to motor dysfunction in PwDM. Similar deficits were neither specifically noted in HbR nor during evaluation of sensory function. Health state indices, such as A 1c , blood pressure, body mass index, and cholesterol, were found to clarify group effects. Conclusions: Further work is needed to clarify potential sex-based differences in PwDM during motor tasks as well as the root of reduced cortical HbO indices but unchanged HbR indices in PwDM.
Brain and Cognition, 2014
The present functional magnetic resonance imaging study examined the neural response to familiar ... more The present functional magnetic resonance imaging study examined the neural response to familiar and unfamiliar, sport and non-sport environmental sounds in expert and novice athletes. Results revealed differential neural responses dependent on sports expertise. Experts had greater neural activation than novices in focal sensorimotor areas such as the supplementary motor area, and pre-and postcentral gyri. Novices showed greater activation than experts in widespread areas involved in perception (i.e. supramarginal, middle occipital, and calcarine gyri; precuneus; inferior and superior parietal lobules), and motor planning and processing (i.e. inferior frontal, middle frontal, and middle temporal gyri). These between-group neural differences also appeared as an expertise effect within specific conditions. Experts showed greater activation than novices during the sport familiar condition in regions responsible for auditory and motor planning, including the inferior frontal gyrus and the parietal operculum. Novices only showed greater activation than experts in the supramarginal gyrus and pons during the non-sport unfamiliar condition, and in the middle frontal gyrus during the sport unfamiliar condition. These results are consistent with the view that expert athletes are attuned to only the most familiar, highly relevant sounds and tune out unfamiliar, irrelevant sounds. Furthermore, these findings that athletes show activation in areas known to be involved in action planning when passively listening to sounds suggests that auditory perception of action can lead to the re-instantiation of neural areas involved in producing these actions, especially if someone has expertise performing the actions.
Experimental Brain Research
Neurophotonics, 2020
Significance: Deficits in sensorimotor function in persons with type II diabetes mellitus (PwDM) ... more Significance: Deficits in sensorimotor function in persons with type II diabetes mellitus (PwDM) have traditionally been considered a result of peripheral nerve damage. Emerging evidence has suggested that factors outside of nerve damage due to type II diabetes mellitus, such as impaired hemodynamic function, contribute significantly to both sensory and motor deficits in PwDM. Aim: The focus of the current study was to evaluate functional cortical hemodynamic activity during sensory and motor tasks in PwDM. Approach: Functional near-infrared spectroscopy was used to monitor oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) across the cortex during sensory and motor tasks involving the hands. Results: Decline in HbO across sensory and motor regions of interest was found in PwDM with simultaneous deficits in manual motor tasks, providing the first evidence of functional cortical hemodynamic activity deficits relating to motor dysfunction in PwDM. Similar deficits were neither specifically noted in HbR nor during evaluation of sensory function. Health state indices, such as A 1c , blood pressure, body mass index, and cholesterol, were found to clarify group effects. Conclusions: Further work is needed to clarify potential sex-based differences in PwDM during motor tasks as well as the root of reduced cortical HbO indices but unchanged HbR indices in PwDM.
Brain and Cognition, 2014
The present functional magnetic resonance imaging study examined the neural response to familiar ... more The present functional magnetic resonance imaging study examined the neural response to familiar and unfamiliar, sport and non-sport environmental sounds in expert and novice athletes. Results revealed differential neural responses dependent on sports expertise. Experts had greater neural activation than novices in focal sensorimotor areas such as the supplementary motor area, and pre-and postcentral gyri. Novices showed greater activation than experts in widespread areas involved in perception (i.e. supramarginal, middle occipital, and calcarine gyri; precuneus; inferior and superior parietal lobules), and motor planning and processing (i.e. inferior frontal, middle frontal, and middle temporal gyri). These between-group neural differences also appeared as an expertise effect within specific conditions. Experts showed greater activation than novices during the sport familiar condition in regions responsible for auditory and motor planning, including the inferior frontal gyrus and the parietal operculum. Novices only showed greater activation than experts in the supramarginal gyrus and pons during the non-sport unfamiliar condition, and in the middle frontal gyrus during the sport unfamiliar condition. These results are consistent with the view that expert athletes are attuned to only the most familiar, highly relevant sounds and tune out unfamiliar, irrelevant sounds. Furthermore, these findings that athletes show activation in areas known to be involved in action planning when passively listening to sounds suggests that auditory perception of action can lead to the re-instantiation of neural areas involved in producing these actions, especially if someone has expertise performing the actions.