Peyman Khazaei | Shiraz University of Technology (original) (raw)
Uploads
Papers by Peyman Khazaei
— In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is prop... more — In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is proposed for using in photovoltaic system applications. For realizing zero voltage soft switching (ZVS), two active clamp circuits are used for each phases of the boost converter. By utilizing a voltage doubler configuration at the converter's output terminal and connecting the secondary side of coupled inductors in series, high conversion ration can be achieved. The capacitor is also connected in series with output capacitors to transfer leakage energy to the output. Interleaved structure is used in input side to minimize current ripple and reduce magnetic component. So, the converter not only operates with a higher voltage gain, but also is able to operate more efficiently and can be used in photovoltaic (PV) applications. Keywords-high voltage gain; interleaved DC-DC boost converter; photovoltaic system; soft switching performance.
Recently, renewable energies are widely used instead of the fuel energies due to their individual... more Recently, renewable energies are widely used instead of the fuel energies due to their individual potentials such as its availability, low price and environmentally friendly. One of the most important renewable energies is wind power. As a result, investment in wind power is one of the most interesting research to maximize the profit of the investment and market clearing. In this paper, bi-level optimization technique is proposed to maximize the investment problem and market clearing for the wind power at the same time and in one single problem. Then, karush-kuhn-tucker (KKT) conditions and mathematical programming with equilibrium constraints (MPEC) are applied and tried to find one level optimization problem. Due to the nonlinearity of the optimization equation, the Fortuny-Amat & McCarl (FM) linearization technique is used to linearize the model. Finally, the proposed technique is applied to the IEEE 24 buses. The result proves that the optimization analysis is very easy, fast and accurate due to the linear characteristic of the system. All the simulation results are carried out in MATLAB and GAMS softwares.
— In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is prop... more — In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is proposed for using in photovoltaic system applications. For realizing zero voltage soft switching (ZVS), two active clamp circuits are used for each phases of the boost converter. By utilizing a voltage doubler configuration at the converter's output terminal and connecting the secondary side of coupled inductors in series, high conversion ration can be achieved. The capacitor is also connected in series with output capacitors to transfer leakage energy to the output. Interleaved structure is used in input side to minimize current ripple and reduce magnetic component. So, the converter not only operates with a higher voltage gain, but also is able to operate more efficiently and can be used in photovoltaic (PV) applications. Keywords-high voltage gain; interleaved DC-DC boost converter; photovoltaic system; soft switching performance.
— In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is prop... more — In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is proposed for using in photovoltaic system applications. For realizing zero voltage soft switching (ZVS), two active clamp circuits are used for each phases of the boost converter. By utilizing a voltage doubler configuration at the converter's output terminal and connecting the secondary side of coupled inductors in series, high conversion ration can be achieved. The capacitor is also connected in series with output capacitors to transfer leakage energy to the output. Interleaved structure is used in input side to minimize current ripple and reduce magnetic component. So, the converter not only operates with a higher voltage gain, but also is able to operate more efficiently and can be used in photovoltaic (PV) applications. Keywords-high voltage gain; interleaved DC-DC boost converter; photovoltaic system; soft switching performance.
Recently, renewable energies are widely used instead of the fuel energies due to their individual... more Recently, renewable energies are widely used instead of the fuel energies due to their individual potentials such as its availability, low price and environmentally friendly. One of the most important renewable energies is wind power. As a result, investment in wind power is one of the most interesting research to maximize the profit of the investment and market clearing. In this paper, bi-level optimization technique is proposed to maximize the investment problem and market clearing for the wind power at the same time and in one single problem. Then, karush-kuhn-tucker (KKT) conditions and mathematical programming with equilibrium constraints (MPEC) are applied and tried to find one level optimization problem. Due to the nonlinearity of the optimization equation, the Fortuny-Amat & McCarl (FM) linearization technique is used to linearize the model. Finally, the proposed technique is applied to the IEEE 24 buses. The result proves that the optimization analysis is very easy, fast and accurate due to the linear characteristic of the system. All the simulation results are carried out in MATLAB and GAMS softwares.
— In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is prop... more — In this paper, a non isolated interleaved, dc/dc boost converter with a high efficiency is proposed for using in photovoltaic system applications. For realizing zero voltage soft switching (ZVS), two active clamp circuits are used for each phases of the boost converter. By utilizing a voltage doubler configuration at the converter's output terminal and connecting the secondary side of coupled inductors in series, high conversion ration can be achieved. The capacitor is also connected in series with output capacitors to transfer leakage energy to the output. Interleaved structure is used in input side to minimize current ripple and reduce magnetic component. So, the converter not only operates with a higher voltage gain, but also is able to operate more efficiently and can be used in photovoltaic (PV) applications. Keywords-high voltage gain; interleaved DC-DC boost converter; photovoltaic system; soft switching performance.