Meikun Fan | Southwest Jiaotong University (original) (raw)
Uploads
Papers by Meikun Fan
Analytica Chimica Acta, Jan 1, 2011
This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS)... more This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS) that have been developed in the last 10 years. The different techniques of self-assembly to immobilize metallic nanoparticles on solid support are covered. An overview of SERS platforms developed using nanolithography methods, including electron-beam (e-beam) lithography and focused ion beam (FIB) milling are also included, together with several examples of template-based methodologies to generate metallic nano-patterns. The potential of SERS to impact several aspects of analytical chemistry is demonstrated by selected examples of applications in electrochemistry, biosensing, environmental analysis, and remote sensing. This review shows that highly enhancing SERS substrates with a high degree of reliability and reproducibility can now be fabricated at relative low cost, indicating that SERS may finally realize its full potential as a very sensitive tool for routine analytical applications.
This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS)... more This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS) that have been developed in the last 10 years. The different techniques of self-assembly to immobilize metallic nanoparticles on solid support are covered. An overview of SERS platforms developed using nanolithography methods, including electron-beam (e-beam) lithography and focused ion beam (FIB) milling are also included, together with several examples of template-based methodologies to generate metallic nano-patterns. The potential of SERS to impact several aspects of analytical chemistry is demonstrated by selected examples of applications in electrochemistry, biosensing, environmental analysis, and remote sensing. This review shows that highly enhancing SERS substrates with a high degree of reliability and reproducibility can now be fabricated at relative low cost, indicating that SERS may finally realize its full potential as a very sensitive tool for routine analytical applications.
Analytica Chimica Acta, Jan 1, 2011
This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS)... more This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS) that have been developed in the last 10 years. The different techniques of self-assembly to immobilize metallic nanoparticles on solid support are covered. An overview of SERS platforms developed using nanolithography methods, including electron-beam (e-beam) lithography and focused ion beam (FIB) milling are also included, together with several examples of template-based methodologies to generate metallic nano-patterns. The potential of SERS to impact several aspects of analytical chemistry is demonstrated by selected examples of applications in electrochemistry, biosensing, environmental analysis, and remote sensing. This review shows that highly enhancing SERS substrates with a high degree of reliability and reproducibility can now be fabricated at relative low cost, indicating that SERS may finally realize its full potential as a very sensitive tool for routine analytical applications.
This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS)... more This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS) that have been developed in the last 10 years. The different techniques of self-assembly to immobilize metallic nanoparticles on solid support are covered. An overview of SERS platforms developed using nanolithography methods, including electron-beam (e-beam) lithography and focused ion beam (FIB) milling are also included, together with several examples of template-based methodologies to generate metallic nano-patterns. The potential of SERS to impact several aspects of analytical chemistry is demonstrated by selected examples of applications in electrochemistry, biosensing, environmental analysis, and remote sensing. This review shows that highly enhancing SERS substrates with a high degree of reliability and reproducibility can now be fabricated at relative low cost, indicating that SERS may finally realize its full potential as a very sensitive tool for routine analytical applications.