tf.compat.v1.batch_to_space_nd | TensorFlow v2.16.1 (original) (raw)
crops
A Tensor. Must be one of the following types: int32, int64. 2-D with shape [M, 2], all values must be >= 0.crops[i] = [crop_start, crop_end] specifies the amount to crop from input dimension i + 1, which corresponds to spatial dimension i. It is required thatcrop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1].
This operation is equivalent to the following steps:
- Reshape
inputtoreshapedof shape: [block_shape[0], ..., block_shape[M-1], batch / prod(block_shape), input_shape[1], ..., input_shape[N-1]] - Permute dimensions of
reshapedto producepermutedof shape [batch / prod(block_shape),
input_shape[1], block_shape[0], ..., input_shape[M], block_shape[M-1],
input_shape[M+1], ..., input_shape[N-1]] - Reshape
permutedto producereshaped_permutedof shape [batch / prod(block_shape),
input_shape[1] * block_shape[0], ..., input_shape[M] * block_shape[M-1],
input_shape[M+1], ..., input_shape[N-1]] - Crop the start and end of dimensions
[1, ..., M]ofreshaped_permutedaccording tocropsto produce the output of shape: [batch / prod(block_shape),
input_shape[1] * block_shape[0] - crops[0,0] - crops[0,1], ..., input_shape[M] * block_shape[M-1] - crops[M-1,0] - crops[M-1,1],
input_shape[M+1], ..., input_shape[N-1]]
Some examples:
(1) For the following input of shape [4, 1, 1, 1], block_shape = [2, 2], andcrops = [[0, 0], [0, 0]]:
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
The output tensor has shape [1, 2, 2, 1] and value:
x = [[[[1], [2]], [[3], [4]]]]
(2) For the following input of shape [4, 1, 1, 3], block_shape = [2, 2], andcrops = [[0, 0], [0, 0]]:
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
The output tensor has shape [1, 2, 2, 3] and value:
x = [[[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]]]
(3) For the following input of shape [4, 2, 2, 1], block_shape = [2, 2], andcrops = [[0, 0], [0, 0]]:
x = [[[[1], [3]], [[9], [11]]],
[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]
The output tensor has shape [1, 4, 4, 1] and value:
x = [[[[1], [2], [3], [4]],
[[5], [6], [7], [8]],
[[9], [10], [11], [12]],
[[13], [14], [15], [16]]]]
(4) For the following input of shape [8, 1, 3, 1], block_shape = [2, 2], andcrops = [[0, 0], [2, 0]]:
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]
The output tensor has shape [2, 2, 4, 1] and value:
x = [[[[1], [2], [3], [4]],
[[5], [6], [7], [8]]],
[[[9], [10], [11], [12]],
[[13], [14], [15], [16]]]]