Module: tf.nn | TensorFlow v2.16.1 (original) (raw)
Public API for tf._api.v2.nn namespace
Modules
experimental module: Public API for tf._api.v2.nn.experimental namespace
Classes
class RNNCellDeviceWrapper: Operator that ensures an RNNCell runs on a particular device. (deprecated)
class RNNCellDropoutWrapper: Operator adding dropout to inputs and outputs of the given cell. (deprecated)
class RNNCellResidualWrapper: RNNCell wrapper that ensures cell inputs are added to the outputs. (deprecated)
Functions
all_candidate_sampler(...): Generate the set of all classes.
approx_max_k(...): Returns max k
values and their indices of the input operand
in an approximate manner.
approx_min_k(...): Returns min k
values and their indices of the input operand
in an approximate manner.
atrous_conv2d(...): Atrous convolution (a.k.a. convolution with holes or dilated convolution).
atrous_conv2d_transpose(...): The transpose of atrous_conv2d
.
avg_pool(...): Performs the avg pooling on the input.
avg_pool1d(...): Performs the average pooling on the input.
avg_pool2d(...): Performs the average pooling on the input.
avg_pool3d(...): Performs the average pooling on the input.
batch_norm_with_global_normalization(...): Batch normalization.
batch_normalization(...): Batch normalization.
bias_add(...): Adds bias
to value
.
collapse_repeated(...): Merge repeated labels into single labels.
compute_accidental_hits(...): Compute the position ids in sampled_candidates
matching true_classes
.
compute_average_loss(...): Scales per-example losses with sample_weights and computes their average.
conv1d(...): Computes a 1-D convolution given 3-D input and filter tensors.
conv1d_transpose(...): The transpose of conv1d
.
conv2d(...): Computes a 2-D convolution given input
and 4-D filters
tensors.
conv2d_transpose(...): The transpose of conv2d
.
conv3d(...): Computes a 3-D convolution given 5-D input
and filters
tensors.
conv3d_transpose(...): The transpose of conv3d
.
conv_transpose(...): The transpose of convolution
.
convolution(...): Computes sums of N-D convolutions (actually cross-correlation).
crelu(...): Computes Concatenated ReLU.
ctc_beam_search_decoder(...): Performs beam search decoding on the logits given in input.
ctc_greedy_decoder(...): Performs greedy decoding on the logits given in input (best path).
ctc_loss(...): Computes CTC (Connectionist Temporal Classification) loss.
ctc_unique_labels(...): Get unique labels and indices for batched labels for tf.nn.ctc_loss.
depth_to_space(...): DepthToSpace for tensors of type T.
depthwise_conv2d(...): Depthwise 2-D convolution.
depthwise_conv2d_backprop_filter(...): Computes the gradients of depthwise convolution with respect to the filter.
depthwise_conv2d_backprop_input(...): Computes the gradients of depthwise convolution with respect to the input.
dilation2d(...): Computes the grayscale dilation of 4-D input
and 3-D filters
tensors.
dropout(...): Computes dropout: randomly sets elements to zero to prevent overfitting.
elu(...): Computes the exponential linear function.
embedding_lookup(...): Looks up embeddings for the given ids
from a list of tensors.
embedding_lookup_sparse(...): Looks up embeddings for the given ids and weights from a list of tensors.
erosion2d(...): Computes the grayscale erosion of 4-D value
and 3-D filters
tensors.
fixed_unigram_candidate_sampler(...): Samples a set of classes using the provided (fixed) base distribution.
fractional_avg_pool(...): Performs fractional average pooling on the input.
fractional_max_pool(...): Performs fractional max pooling on the input.
gelu(...): Compute the Gaussian Error Linear Unit (GELU) activation function.
in_top_k(...): Outputs whether the targets are in the top K
predictions.
isotonic_regression(...): Solves isotonic regression problems along the given axis.
l2_loss(...): L2 Loss.
l2_normalize(...): Normalizes along dimension axis
using an L2 norm. (deprecated arguments)
leaky_relu(...): Compute the Leaky ReLU activation function.
learned_unigram_candidate_sampler(...): Samples a set of classes from a distribution learned during training.
local_response_normalization(...): Local Response Normalization.
log_poisson_loss(...): Computes log Poisson loss given log_input
.
log_softmax(...): Computes log softmax activations.
lrn(...): Local Response Normalization.
max_pool(...): Performs max pooling on the input.
max_pool1d(...): Performs the max pooling on the input.
max_pool2d(...): Performs max pooling on 2D spatial data such as images.
max_pool3d(...): Performs the max pooling on the input.
max_pool_with_argmax(...): Performs max pooling on the input and outputs both max values and indices.
moments(...): Calculates the mean and variance of x
.
nce_loss(...): Computes and returns the noise-contrastive estimation training loss.
normalize_moments(...): Calculate the mean and variance of based on the sufficient statistics.
pool(...): Performs an N-D pooling operation.
relu(...): Computes rectified linear: max(features, 0)
.
relu6(...): Computes Rectified Linear 6: min(max(features, 0), 6)
.
safe_embedding_lookup_sparse(...): Lookup embedding results, accounting for invalid IDs and empty features.
sampled_softmax_loss(...): Computes and returns the sampled softmax training loss.
scale_regularization_loss(...): Scales the sum of the given regularization losses by number of replicas.
selu(...): Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
separable_conv2d(...): 2-D convolution with separable filters.
sigmoid(...): Computes sigmoid of x
element-wise.
sigmoid_cross_entropy_with_logits(...): Computes sigmoid cross entropy given logits
.
silu(...): Computes the SiLU or Swish activation function: x * sigmoid(beta * x)
.
softmax(...): Computes softmax activations.
softmax_cross_entropy_with_logits(...): Computes softmax cross entropy between logits
and labels
.
softplus(...): Computes elementwise softplus: softplus(x) = log(exp(x) + 1)
.
softsign(...): Computes softsign: features / (abs(features) + 1)
.
space_to_batch(...): SpaceToBatch for N-D tensors of type T.
space_to_depth(...): SpaceToDepth for tensors of type T.
sparse_softmax_cross_entropy_with_logits(...): Computes sparse softmax cross entropy between logits
and labels
.
sufficient_statistics(...): Calculate the sufficient statistics for the mean and variance of x
.
swish(...): Computes the SiLU or Swish activation function: x * sigmoid(beta * x)
.
tanh(...): Computes hyperbolic tangent of x
element-wise.
top_k(...): Finds values and indices of the k
largest entries for the last dimension.
weighted_cross_entropy_with_logits(...): Computes a weighted cross entropy.
weighted_moments(...): Returns the frequency-weighted mean and variance of x
.
with_space_to_batch(...): Performs op
on the space-to-batch representation of input
.
zero_fraction(...): Returns the fraction of zeros in value
.