Sounak Bagchi | Texas Tech University Health Science Center (original) (raw)
Papers by Sounak Bagchi
Gut–Brain Connection, Myth or Reality?
Brain, Behavior, and Immunity
International Journal of Nanomedicine
The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respirato... more The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for sitespecific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-theart nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.
The FASEB Journal, Apr 1, 2020
Mini Reviews in Medicinal Chemistry, 2018
Farnesyl Transferase is a hetero-dimer transferase that targets Ras proteins and attaches a farne... more Farnesyl Transferase is a hetero-dimer transferase that targets Ras proteins and attaches a farnesyl group to it. This Ras protein, on localization to the cell membrane, has the ability to induce activation of various growth and proliferation pathways of the cell. Over-activation of mutated Ras may lead to the development of cancer. Farnesyl Transferase catalyses the initial step in the post-translational modification of normal as well as mutated Ras gene, thus facilitating its tethering to the cell membrane. Inhibition of Farnesyl Transferase is the main step in restricting the activity of mutant Ras protein. Thus the above enzyme has emerged as a novel target for anti-cancer agents. Here we review the role of Farnesyl Transferase in tumorigenesis and various compounds of synthetic and natural origin acting as Farnesyl Transferase inhibitors as potential anti-cancer agents.
Journal of Pharmaceutical Chemistry, 2017
High throughput virtual screening (HTVS) has been proved a successful tool for getting LEADs in d... more High throughput virtual screening (HTVS) has been proved a successful tool for getting LEADs in drug design and discovery. In an attempt to design new Dengue protease inhibitors, we performed HTVS using Zinc13 database containing 13,195,609 drug-like molecules. ZINC42678127 was identified as potential HIT against Dengue protease. It's shape and electrostatic complimentary was found to be 0.608 and 0.078, respectively. Qikprop analysis of the compound complied with the Rule of Five (Ro5) and other drug-likeliness properties. Binding mode analysis of docked conformer of ZINC42678127, displayed favorable interaction with the active site residues of DENV protease. The identified HIT has a potential to become a LEAD against Dengue protease.
Drug Discovery Today, 2019
The paradigm of central nervous system (CNS) drug discovery has mostly relied on traditional appr... more The paradigm of central nervous system (CNS) drug discovery has mostly relied on traditional approaches of rodent models or cell-based in vitro models. Owing to the issues of species differences between humans and rodents, it is difficult to correlate the robustness of data for neurodevelopmental studies. With advances in the stem-cell field, 3D CNS organoids have been developed and explored owing to their resemblance to the human brain architecture and functions. Further, CNS organoids provide a unique opportunity to mimic the human brain physiology and serve as a modeling tool to study the normal versus pathological brain or the elucidation of mechanisms of neurological disorders. Here, we discuss the recent application of a CNS organoid explored for neurodevelopment disease or a screening tool for CNS drug development.
Drug Design, Development and Therapy
The blood-brain barrier (BBB) is comprised of brain microvascular endothelial central nervous sys... more The blood-brain barrier (BBB) is comprised of brain microvascular endothelial central nervous system (CNS) cells, which communicate with other CNS cells (astrocytes, pericytes) and behave according to the state of the CNS, by responding against pathological environments and modulating disease progression. The BBB plays a crucial role in maintaining homeostasis in the CNS by maintaining restricted transport of toxic or harmful molecules, transport of nutrients, and removal of metabolites from the brain. Neurological disorders, such as NeuroHIV, cerebral stroke, brain tumors, and other neurodegenerative diseases increase the permeability of the BBB. While on the other hand, semipermeable nature of BBB restricts the movement of bigger molecules i.e. drugs or proteins (>500 kDa) across it, leading to minimal bioavailability of drugs in the CNS. This poses the most significant shortcoming in the development of therapeutics for CNS neurodegenerative disorders. Although the complexity of the BBB (dynamic and adaptable barrier) affects approaches of CNS drug delivery and promotes disease progression, understanding the composition and functions of BBB provides a platform for novel innovative approaches towards drug delivery to CNS. The methodical and scientific interests in the physiology and pathology of the BBB led to the development and the advancement of numerous in vitro models of the BBB. This review discusses the fundamentals of BBB structure, permeation mechanisms, an overview of all the different in-vitro BBB models with their advantages and disadvantages, and rationale of selecting penetration prediction methods towards the critical role in the development of the CNS therapeutics.
Gut–Brain Connection, Myth or Reality?
Brain, Behavior, and Immunity
International Journal of Nanomedicine
The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respirato... more The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for sitespecific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-theart nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.
The FASEB Journal, Apr 1, 2020
Mini Reviews in Medicinal Chemistry, 2018
Farnesyl Transferase is a hetero-dimer transferase that targets Ras proteins and attaches a farne... more Farnesyl Transferase is a hetero-dimer transferase that targets Ras proteins and attaches a farnesyl group to it. This Ras protein, on localization to the cell membrane, has the ability to induce activation of various growth and proliferation pathways of the cell. Over-activation of mutated Ras may lead to the development of cancer. Farnesyl Transferase catalyses the initial step in the post-translational modification of normal as well as mutated Ras gene, thus facilitating its tethering to the cell membrane. Inhibition of Farnesyl Transferase is the main step in restricting the activity of mutant Ras protein. Thus the above enzyme has emerged as a novel target for anti-cancer agents. Here we review the role of Farnesyl Transferase in tumorigenesis and various compounds of synthetic and natural origin acting as Farnesyl Transferase inhibitors as potential anti-cancer agents.
Journal of Pharmaceutical Chemistry, 2017
High throughput virtual screening (HTVS) has been proved a successful tool for getting LEADs in d... more High throughput virtual screening (HTVS) has been proved a successful tool for getting LEADs in drug design and discovery. In an attempt to design new Dengue protease inhibitors, we performed HTVS using Zinc13 database containing 13,195,609 drug-like molecules. ZINC42678127 was identified as potential HIT against Dengue protease. It's shape and electrostatic complimentary was found to be 0.608 and 0.078, respectively. Qikprop analysis of the compound complied with the Rule of Five (Ro5) and other drug-likeliness properties. Binding mode analysis of docked conformer of ZINC42678127, displayed favorable interaction with the active site residues of DENV protease. The identified HIT has a potential to become a LEAD against Dengue protease.
Drug Discovery Today, 2019
The paradigm of central nervous system (CNS) drug discovery has mostly relied on traditional appr... more The paradigm of central nervous system (CNS) drug discovery has mostly relied on traditional approaches of rodent models or cell-based in vitro models. Owing to the issues of species differences between humans and rodents, it is difficult to correlate the robustness of data for neurodevelopmental studies. With advances in the stem-cell field, 3D CNS organoids have been developed and explored owing to their resemblance to the human brain architecture and functions. Further, CNS organoids provide a unique opportunity to mimic the human brain physiology and serve as a modeling tool to study the normal versus pathological brain or the elucidation of mechanisms of neurological disorders. Here, we discuss the recent application of a CNS organoid explored for neurodevelopment disease or a screening tool for CNS drug development.
Drug Design, Development and Therapy
The blood-brain barrier (BBB) is comprised of brain microvascular endothelial central nervous sys... more The blood-brain barrier (BBB) is comprised of brain microvascular endothelial central nervous system (CNS) cells, which communicate with other CNS cells (astrocytes, pericytes) and behave according to the state of the CNS, by responding against pathological environments and modulating disease progression. The BBB plays a crucial role in maintaining homeostasis in the CNS by maintaining restricted transport of toxic or harmful molecules, transport of nutrients, and removal of metabolites from the brain. Neurological disorders, such as NeuroHIV, cerebral stroke, brain tumors, and other neurodegenerative diseases increase the permeability of the BBB. While on the other hand, semipermeable nature of BBB restricts the movement of bigger molecules i.e. drugs or proteins (>500 kDa) across it, leading to minimal bioavailability of drugs in the CNS. This poses the most significant shortcoming in the development of therapeutics for CNS neurodegenerative disorders. Although the complexity of the BBB (dynamic and adaptable barrier) affects approaches of CNS drug delivery and promotes disease progression, understanding the composition and functions of BBB provides a platform for novel innovative approaches towards drug delivery to CNS. The methodical and scientific interests in the physiology and pathology of the BBB led to the development and the advancement of numerous in vitro models of the BBB. This review discusses the fundamentals of BBB structure, permeation mechanisms, an overview of all the different in-vitro BBB models with their advantages and disadvantages, and rationale of selecting penetration prediction methods towards the critical role in the development of the CNS therapeutics.