API - Toolz (original) (raw)
This page contains a comprehensive list of all functions within toolz
. Docstrings should provide sufficient understanding for any individual function.
Itertoolz¶
accumulate(binop, seq[, initial]) | Repeatedly apply binary function to a sequence, accumulating results |
---|---|
concat(seqs) | Concatenate zero or more iterables, any of which may be infinite. |
concatv(*seqs) | Variadic version of concat |
cons(el, seq) | Add el to beginning of (possibly infinite) sequence seq. |
count(seq) | Count the number of items in seq |
diff(*seqs, **kwargs) | Return those items that differ between sequences |
drop(n, seq) | The sequence following the first n elements |
first(seq) | The first element in a sequence |
frequencies(seq) | Find number of occurrences of each value in seq |
get(ind, seq[, default]) | Get element in a sequence or dict |
groupby(key, seq) | Group a collection by a key function |
interleave(seqs) | Interleave a sequence of sequences |
interpose(el, seq) | Introduce element between each pair of elements in seq |
isdistinct(seq) | All values in sequence are distinct |
isiterable(x) | Is x iterable? |
iterate(func, x) | Repeatedly apply a function func onto an original input |
join(leftkey, leftseq, rightkey, rightseq[, ...]) | Join two sequences on common attributes |
last(seq) | The last element in a sequence |
mapcat(func, seqs) | Apply func to each sequence in seqs, concatenating results. |
merge_sorted(*seqs, **kwargs) | Merge and sort a collection of sorted collections |
nth(n, seq) | The nth element in a sequence |
partition(n, seq[, pad]) | Partition sequence into tuples of length n |
partition_all(n, seq) | Partition all elements of sequence into tuples of length at most n |
peek(seq) | Retrieve the next element of a sequence |
peekn(n, seq) | Retrieve the next n elements of a sequence |
pluck(ind, seqs[, default]) | plucks an element or several elements from each item in a sequence. |
random_sample(prob, seq[, random_state]) | Return elements from a sequence with probability of prob |
reduceby(key, binop, seq[, init]) | Perform a simultaneous groupby and reduction |
remove(predicate, seq) | Return those items of sequence for which predicate(item) is False |
second(seq) | The second element in a sequence |
sliding_window(n, seq) | A sequence of overlapping subsequences |
tail(n, seq) | The last n elements of a sequence |
take(n, seq) | The first n elements of a sequence |
take_nth(n, seq) | Every nth item in seq |
topk(k, seq[, key]) | Find the k largest elements of a sequence |
unique(seq[, key]) | Return only unique elements of a sequence |
Functoolz¶
apply(*func_and_args, **kwargs) | Applies a function and returns the results |
---|---|
complement(func) | Convert a predicate function to its logical complement. |
compose(*funcs) | Compose functions to operate in series. |
compose_left(*funcs) | Compose functions to operate in series. |
curry(*args, **kwargs) | Curry a callable function |
do(func, x) | Runs func on x, returns x |
excepts(exc, func[, handler]) | A wrapper around a function to catch exceptions and dispatch to a handler. |
flip([func, a, b]) | Call the function call with the arguments flipped |
identity(x) | Identity function. |
juxt(*funcs) | Creates a function that calls several functions with the same arguments |
memoize([func, cache, key]) | Cache a function's result for speedy future evaluation |
pipe(data, *funcs) | Pipe a value through a sequence of functions |
thread_first(val, *forms) | Thread value through a sequence of functions/forms |
thread_last(val, *forms) | Thread value through a sequence of functions/forms |
Dicttoolz¶
assoc(d, key, value[, factory]) | Return a new dict with new key value pair |
---|---|
assoc_in(d, keys, value[, factory]) | Return a new dict with new, potentially nested, key value pair |
dissoc(d, *keys, **kwargs) | Return a new dict with the given key(s) removed. |
get_in(keys, coll[, default, no_default]) | Returns coll[i0][i1]...[iX] where [i0, i1, ..., iX]==keys. |
itemfilter(predicate, d[, factory]) | Filter items in dictionary by item |
itemmap(func, d[, factory]) | Apply function to items of dictionary |
keyfilter(predicate, d[, factory]) | Filter items in dictionary by key |
keymap(func, d[, factory]) | Apply function to keys of dictionary |
merge(*dicts, **kwargs) | Merge a collection of dictionaries |
merge_with(func, *dicts, **kwargs) | Merge dictionaries and apply function to combined values |
update_in(d, keys, func[, default, factory]) | Update value in a (potentially) nested dictionary |
valfilter(predicate, d[, factory]) | Filter items in dictionary by value |
valmap(func, d[, factory]) | Apply function to values of dictionary |
Recipes¶
countby(key, seq) | Count elements of a collection by a key function |
---|---|
partitionby(func, seq) | Partition a sequence according to a function |
Sandbox¶
parallel.fold(binop, seq[, default, map, ...]) | Reduce without guarantee of ordered reduction. |
---|---|
core.EqualityHashKey(key, item) | Create a hash key that uses equality comparisons between items. |
core.unzip(seq) | Inverse of zip |
Definitions¶
toolz.itertoolz.accumulate(binop, seq, initial='__no__default__')[source]¶
Repeatedly apply binary function to a sequence, accumulating results
from operator import add, mul list(accumulate(add, [1, 2, 3, 4, 5])) [1, 3, 6, 10, 15] list(accumulate(mul, [1, 2, 3, 4, 5])) [1, 2, 6, 24, 120]
Accumulate is similar to reduce
and is good for making functions like cumulative sum:
from functools import partial, reduce sum = partial(reduce, add) cumsum = partial(accumulate, add)
Accumulate also takes an optional argument that will be used as the first value. This is similar to reduce.
list(accumulate(add, [1, 2, 3], -1)) [-1, 0, 2, 5] list(accumulate(add, [], 1)) [1]
See Also:
itertools.accumulate : In standard itertools for Python 3.2+
toolz.itertoolz.concat(seqs)[source]¶
Concatenate zero or more iterables, any of which may be infinite.
An infinite sequence will prevent the rest of the arguments from being included.
We use chain.from_iterable rather than chain(*seqs)
so that seqs can be a generator.
list(concat([[], [1], [2, 3]])) [1, 2, 3]
See also:
itertools.chain.from_iterable equivalent
toolz.itertoolz.concatv(*seqs)[source]¶
Variadic version of concat
list(concatv([], ["a"], ["b", "c"])) ['a', 'b', 'c']
See also:
itertools.chain
toolz.itertoolz.cons(el, seq)[source]¶
Add el to beginning of (possibly infinite) sequence seq.
list(cons(1, [2, 3])) [1, 2, 3]
toolz.itertoolz.count(seq)[source]¶
Count the number of items in seq
Like the builtin len
but works on lazy sequences.
Not to be confused with itertools.count
See also:
len
toolz.itertoolz.diff(*seqs, **kwargs)[source]¶
Return those items that differ between sequences
list(diff([1, 2, 3], [1, 2, 10, 100])) [(3, 10)]
Shorter sequences may be padded with a default
value:
list(diff([1, 2, 3], [1, 2, 10, 100], default=None)) [(3, 10), (None, 100)]
A key
function may also be applied to each item to use during comparisons:
list(diff(['apples', 'bananas'], ['Apples', 'Oranges'], key=str.lower)) [('bananas', 'Oranges')]
toolz.itertoolz.drop(n, seq)[source]¶
The sequence following the first n elements
list(drop(2, [10, 20, 30, 40, 50])) [30, 40, 50]
See Also:
take tail
toolz.itertoolz.first(seq)[source]¶
The first element in a sequence
toolz.itertoolz.frequencies(seq)[source]¶
Find number of occurrences of each value in seq
frequencies(['cat', 'cat', 'ox', 'pig', 'pig', 'cat'])
{'cat': 3, 'ox': 1, 'pig': 2}
See Also:
countby groupby
toolz.itertoolz.get(ind, seq, default='__no__default__')[source]¶
Get element in a sequence or dict
Provides standard indexing
get(1, 'ABC') # Same as 'ABC'[1] 'B'
Pass a list to get multiple values
get([1, 2], 'ABC') # ('ABC'[1], 'ABC'[2]) ('B', 'C')
Works on any value that supports indexing/getitem For example here we see that it works with dictionaries
phonebook = {'Alice': '555-1234', ... 'Bob': '555-5678', ... 'Charlie':'555-9999'} get('Alice', phonebook) '555-1234'
get(['Alice', 'Bob'], phonebook) ('555-1234', '555-5678')
Provide a default for missing values
get(['Alice', 'Dennis'], phonebook, None) ('555-1234', None)
See Also:
pluck
toolz.itertoolz.groupby(key, seq)[source]¶
Group a collection by a key function
names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank'] groupby(len, names)
{3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}
iseven = lambda x: x % 2 == 0 groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8])
{False: [1, 3, 5, 7], True: [2, 4, 6, 8]}
Non-callable keys imply grouping on a member.
groupby('gender', [{'name': 'Alice', 'gender': 'F'}, ... {'name': 'Bob', 'gender': 'M'}, ... {'name': 'Charlie', 'gender': 'M'}]) {'F': [{'gender': 'F', 'name': 'Alice'}], 'M': [{'gender': 'M', 'name': 'Bob'}, {'gender': 'M', 'name': 'Charlie'}]}
Not to be confused with itertools.groupby
See Also:
countby
toolz.itertoolz.interleave(seqs)[source]¶
Interleave a sequence of sequences
list(interleave([[1, 2], [3, 4]])) [1, 3, 2, 4]
''.join(interleave(('ABC', 'XY'))) 'AXBYC'
Both the individual sequences and the sequence of sequences may be infinite
Returns a lazy iterator
toolz.itertoolz.interpose(el, seq)[source]¶
Introduce element between each pair of elements in seq
list(interpose("a", [1, 2, 3])) [1, 'a', 2, 'a', 3]
toolz.itertoolz.isdistinct(seq)[source]¶
All values in sequence are distinct
isdistinct([1, 2, 3]) True isdistinct([1, 2, 1]) False
isdistinct("Hello") False isdistinct("World") True
toolz.itertoolz.isiterable(x)[source]¶
Is x iterable?
isiterable([1, 2, 3]) True isiterable('abc') True isiterable(5) False
toolz.itertoolz.iterate(func, x)[source]¶
Repeatedly apply a function func onto an original input
Yields x, then func(x), then func(func(x)), then func(func(func(x))), etc..
def inc(x): return x + 1 counter = iterate(inc, 0) next(counter) 0 next(counter) 1 next(counter) 2
double = lambda x: x * 2 powers_of_two = iterate(double, 1) next(powers_of_two) 1 next(powers_of_two) 2 next(powers_of_two) 4 next(powers_of_two) 8
toolz.itertoolz.join(leftkey, leftseq, rightkey, rightseq, left_default='__no__default__', right_default='__no__default__')[source]¶
Join two sequences on common attributes
This is a semi-streaming operation. The LEFT sequence is fully evaluated and placed into memory. The RIGHT sequence is evaluated lazily and so can be arbitrarily large.
(Note: If right_default is defined, then unique keys of rightseq
will also be stored in memory.)
friends = [('Alice', 'Edith'), ... ('Alice', 'Zhao'), ... ('Edith', 'Alice'), ... ('Zhao', 'Alice'), ... ('Zhao', 'Edith')]
cities = [('Alice', 'NYC'), ... ('Alice', 'Chicago'), ... ('Dan', 'Sydney'), ... ('Edith', 'Paris'), ... ('Edith', 'Berlin'), ... ('Zhao', 'Shanghai')]
Vacation opportunities
In what cities do people have friends?
result = join(second, friends, ... first, cities) for ((a, b), (c, d)) in sorted(unique(result)): ... print((a, d)) ('Alice', 'Berlin') ('Alice', 'Paris') ('Alice', 'Shanghai') ('Edith', 'Chicago') ('Edith', 'NYC') ('Zhao', 'Chicago') ('Zhao', 'NYC') ('Zhao', 'Berlin') ('Zhao', 'Paris')
Specify outer joins with keyword arguments left_default
and/orright_default
. Here is a full outer join in which unmatched elements are paired with None.
identity = lambda x: x list(join(identity, [1, 2, 3], ... identity, [2, 3, 4], ... left_default=None, right_default=None)) [(2, 2), (3, 3), (None, 4), (1, None)]
Usually the key arguments are callables to be applied to the sequences. If the keys are not obviously callable then it is assumed that indexing was intended, e.g. the following is a legal change. The join is implemented as a hash join and the keys of leftseq must be hashable. Additionally, if right_default is defined, then keys of rightseq must also be hashable.
result = join(second, friends, first, cities)
result = join(1, friends, 0, cities)
toolz.itertoolz.last(seq)[source]¶
The last element in a sequence
toolz.itertoolz.mapcat(func, seqs)[source]¶
Apply func to each sequence in seqs, concatenating results.
list(mapcat(lambda s: [c.upper() for c in s], ... [["a", "b"], ["c", "d", "e"]])) ['A', 'B', 'C', 'D', 'E']
toolz.itertoolz.merge_sorted(*seqs, **kwargs)[source]¶
Merge and sort a collection of sorted collections
This works lazily and only keeps one value from each iterable in memory.
list(merge_sorted([1, 3, 5], [2, 4, 6])) [1, 2, 3, 4, 5, 6]
''.join(merge_sorted('abc', 'abc', 'abc')) 'aaabbbccc'
The “key” function used to sort the input may be passed as a keyword.
list(merge_sorted([2, 3], [1, 3], key=lambda x: x // 3)) [2, 1, 3, 3]
toolz.itertoolz.nth(n, seq)[source]¶
The nth element in a sequence
toolz.itertoolz.partition(n, seq, pad='__no__pad__')[source]¶
Partition sequence into tuples of length n
list(partition(2, [1, 2, 3, 4])) [(1, 2), (3, 4)]
If the length of seq
is not evenly divisible by n
, the final tuple is dropped if pad
is not specified, or filled to length n
by pad:
list(partition(2, [1, 2, 3, 4, 5])) [(1, 2), (3, 4)]
list(partition(2, [1, 2, 3, 4, 5], pad=None)) [(1, 2), (3, 4), (5, None)]
See Also:
partition_all
toolz.itertoolz.partition_all(n, seq)[source]¶
Partition all elements of sequence into tuples of length at most n
The final tuple may be shorter to accommodate extra elements.
list(partition_all(2, [1, 2, 3, 4])) [(1, 2), (3, 4)]
list(partition_all(2, [1, 2, 3, 4, 5])) [(1, 2), (3, 4), (5,)]
See Also:
partition
toolz.itertoolz.peek(seq)[source]¶
Retrieve the next element of a sequence
Returns the first element and an iterable equivalent to the original sequence, still having the element retrieved.
seq = [0, 1, 2, 3, 4] first, seq = peek(seq) first 0 list(seq) [0, 1, 2, 3, 4]
toolz.itertoolz.peekn(n, seq)[source]¶
Retrieve the next n elements of a sequence
Returns a tuple of the first n elements and an iterable equivalent to the original, still having the elements retrieved.
seq = [0, 1, 2, 3, 4] first_two, seq = peekn(2, seq) first_two (0, 1) list(seq) [0, 1, 2, 3, 4]
toolz.itertoolz.pluck(ind, seqs, default='__no__default__')[source]¶
plucks an element or several elements from each item in a sequence.
pluck
maps itertoolz.get
over a sequence and returns one or more elements of each item in the sequence.
This is equivalent to running map(curried.get(ind), seqs)
ind
can be either a single string/index or a list of strings/indices.seqs
should be sequence containing sequences or dicts.
e.g.
data = [{'id': 1, 'name': 'Cheese'}, {'id': 2, 'name': 'Pies'}] list(pluck('name', data)) ['Cheese', 'Pies'] list(pluck([0, 1], [[1, 2, 3], [4, 5, 7]])) [(1, 2), (4, 5)]
See Also:
get map
toolz.itertoolz.random_sample(prob, seq, random_state=None)[source]¶
Return elements from a sequence with probability of prob
Returns a lazy iterator of random items from seq.
random_sample
considers each item independently and without replacement. See below how the first time it returned 13 items and the next time it returned 6 items.
seq = list(range(100)) list(random_sample(0.1, seq)) [6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95] list(random_sample(0.1, seq)) [6, 44, 54, 61, 69, 94]
Providing an integer seed for random_state
will result in deterministic sampling. Given the same seed it will return the same sample every time.
list(random_sample(0.1, seq, random_state=2016)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98] list(random_sample(0.1, seq, random_state=2016)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
random_state
can also be any object with a method random
that returns floats between 0.0 and 1.0 (exclusive).
from random import Random randobj = Random(2016) list(random_sample(0.1, seq, random_state=randobj)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
toolz.itertoolz.reduceby(key, binop, seq, init='__no__default__')[source]¶
Perform a simultaneous groupby and reduction
The computation:
result = reduceby(key, binop, seq, init)
is equivalent to the following:
def reduction(group):
... return reduce(binop, group, init)
groups = groupby(key, seq)
result = valmap(reduction, groups)
But the former does not build the intermediate groups, allowing it to operate in much less space. This makes it suitable for larger datasets that do not fit comfortably in memory
The init
keyword argument is the default initialization of the reduction. This can be either a constant value like 0
or a callable like lambda : 0
as might be used in defaultdict
.
Simple Examples¶
from operator import add, mul iseven = lambda x: x % 2 == 0
data = [1, 2, 3, 4, 5]
reduceby(iseven, add, data)
{False: 9, True: 6}
reduceby(iseven, mul, data)
{False: 15, True: 8}
Complex Example¶
projects = [{'name': 'build roads', 'state': 'CA', 'cost': 1000000}, ... {'name': 'fight crime', 'state': 'IL', 'cost': 100000}, ... {'name': 'help farmers', 'state': 'IL', 'cost': 2000000}, ... {'name': 'help farmers', 'state': 'CA', 'cost': 200000}]
reduceby('state',
... lambda acc, x: acc + x['cost'], ... projects, 0) {'CA': 1200000, 'IL': 2100000}
Example Using init
¶
def set_add(s, i): ... s.add(i) ... return s
reduceby(iseven, set_add, [1, 2, 3, 4, 1, 2, 3], set)
{True: set([2, 4]), False: set([1, 3])}
toolz.itertoolz.remove(predicate, seq)[source]¶
Return those items of sequence for which predicate(item) is False
def iseven(x): ... return x % 2 == 0 list(remove(iseven, [1, 2, 3, 4])) [1, 3]
toolz.itertoolz.second(seq)[source]¶
The second element in a sequence
toolz.itertoolz.sliding_window(n, seq)[source]¶
A sequence of overlapping subsequences
list(sliding_window(2, [1, 2, 3, 4])) [(1, 2), (2, 3), (3, 4)]
This function creates a sliding window suitable for transformations like sliding means / smoothing
mean = lambda seq: float(sum(seq)) / len(seq) list(map(mean, sliding_window(2, [1, 2, 3, 4]))) [1.5, 2.5, 3.5]
toolz.itertoolz.tail(n, seq)[source]¶
The last n elements of a sequence
tail(2, [10, 20, 30, 40, 50]) [40, 50]
See Also:
drop take
toolz.itertoolz.take(n, seq)[source]¶
The first n elements of a sequence
list(take(2, [10, 20, 30, 40, 50])) [10, 20]
See Also:
drop tail
toolz.itertoolz.take_nth(n, seq)[source]¶
Every nth item in seq
list(take_nth(2, [10, 20, 30, 40, 50])) [10, 30, 50]
toolz.itertoolz.topk(k, seq, key=None)[source]¶
Find the k largest elements of a sequence
Operates lazily in n*log(k)
time
topk(2, [1, 100, 10, 1000]) (1000, 100)
Use a key function to change sorted order
topk(2, ['Alice', 'Bob', 'Charlie', 'Dan'], key=len) ('Charlie', 'Alice')
See also:
heapq.nlargest
toolz.itertoolz.unique(seq, key=None)[source]¶
Return only unique elements of a sequence
tuple(unique((1, 2, 3))) (1, 2, 3) tuple(unique((1, 2, 1, 3))) (1, 2, 3)
Uniqueness can be defined by key keyword
tuple(unique(['cat', 'mouse', 'dog', 'hen'], key=len)) ('cat', 'mouse')
toolz.recipes.countby(key, seq)[source]¶
Count elements of a collection by a key function
countby(len, ['cat', 'mouse', 'dog']) {3: 2, 5: 1}
def iseven(x): return x % 2 == 0 countby(iseven, [1, 2, 3])
{True: 1, False: 2}
See Also:
groupby
toolz.recipes.partitionby(func, seq)[source]¶
Partition a sequence according to a function
Partition s into a sequence of lists such that, when traversings, every time the output of func changes a new list is started and that and subsequent items are collected into that list.
is_space = lambda c: c == " " list(partitionby(is_space, "I have space")) [('I',), (' ',), ('h', 'a', 'v', 'e'), (' ',), ('s', 'p', 'a', 'c', 'e')]
is_large = lambda x: x > 10 list(partitionby(is_large, [1, 2, 1, 99, 88, 33, 99, -1, 5])) [(1, 2, 1), (99, 88, 33, 99), (-1, 5)]
See also:
partition groupby itertools.groupby
toolz.functoolz.apply(*func_and_args, **kwargs)[source]¶
Applies a function and returns the results
def double(x): return 2*x def inc(x): return x + 1 apply(double, 5) 10
tuple(map(apply, [double, inc, double], [10, 500, 8000])) (20, 501, 16000)
toolz.functoolz.complement(func)[source]¶
Convert a predicate function to its logical complement.
In other words, return a function that, for inputs that normally yield True, yields False, and vice-versa.
def iseven(n): return n % 2 == 0 isodd = complement(iseven) iseven(2) True isodd(2) False
toolz.functoolz.compose(*funcs)[source]¶
Compose functions to operate in series.
Returns a function that applies other functions in sequence.
Functions are applied from right to left so thatcompose(f, g, h)(x, y)
is the same as f(g(h(x, y)))
.
If no arguments are provided, the identity function (f(x) = x) is returned.
inc = lambda i: i + 1 compose(str, inc)(3) '4'
See Also:
compose_left pipe
toolz.functoolz.compose_left(*funcs)[source]¶
Compose functions to operate in series.
Returns a function that applies other functions in sequence.
Functions are applied from left to right so thatcompose_left(f, g, h)(x, y)
is the same as h(g(f(x, y)))
.
If no arguments are provided, the identity function (f(x) = x) is returned.
inc = lambda i: i + 1 compose_left(inc, str)(3) '4'
See Also:
compose pipe
class toolz.functoolz.curry(*args, **kwargs)[source]¶
Curry a callable function
Enables partial application of arguments through calling a function with an incomplete set of arguments.
def mul(x, y): ... return x * y mul = curry(mul)
double = mul(2) double(10) 20
Also supports keyword arguments
@curry # Can use curry as a decorator ... def f(x, y, a=10): ... return a * (x + y)
add = f(a=1) add(2, 3) 5
See Also:
toolz.curried - namespace of curried functions
https://toolz.readthedocs.io/en/latest/curry.html
toolz.functoolz.do(func, x)[source]¶
Runs func
on x
, returns x
Because the results of func
are not returned, only the side effects of func
are relevant.
Logging functions can be made by composing do
with a storage function like list.append
or file.write
from toolz import compose from toolz.curried import do
log = [] inc = lambda x: x + 1 inc = compose(inc, do(log.append)) inc(1) 2 inc(11) 12 log [1, 11]
class toolz.functoolz.excepts(exc, func, handler=<function return_none>)[source]¶
A wrapper around a function to catch exceptions and dispatch to a handler.
This is like a functional try/except block, in the same way that ifexprs are functional if/else blocks.
Examples¶
excepting = excepts( ... ValueError, ... lambda a: [1, 2].index(a), ... lambda _: -1, ... ) excepting(1) 0 excepting(3) -1
Multiple exceptions and default except clause.
excepting = excepts((IndexError, KeyError), lambda a: a[0]) excepting([]) excepting([1]) 1 excepting({}) excepting({0: 1}) 1
toolz.functoolz.flip(func='__no__default__', a='__no__default__', b='__no__default__')[source]¶
Call the function call with the arguments flipped
This function is curried.
def div(a, b): ... return a // b ... flip(div, 2, 6) 3 div_by_two = flip(div, 2) div_by_two(4) 2
This is particularly useful for built in functions and functions defined in C extensions that accept positional only arguments. For example: isinstance, issubclass.
data = [1, 'a', 'b', 2, 1.5, object(), 3] only_ints = list(filter(flip(isinstance, int), data)) only_ints [1, 2, 3]
toolz.functoolz.identity(x)[source]¶
Identity function. Return x
class toolz.functoolz.juxt(*funcs)[source]¶
Creates a function that calls several functions with the same arguments
Takes several functions and returns a function that applies its arguments to each of those functions then returns a tuple of the results.
Name comes from juxtaposition: the fact of two things being seen or placed close together with contrasting effect.
inc = lambda x: x + 1 double = lambda x: x * 2 juxt(inc, double)(10) (11, 20) juxt([inc, double])(10) (11, 20)
toolz.functoolz.memoize(func='__no__default__', cache=None, key=None)[source]¶
Cache a function’s result for speedy future evaluation
Considerations:
Trades memory for speed. Only use on pure functions.
def add(x, y): return x + y add = memoize(add)
Or use as a decorator
@memoize ... def add(x, y): ... return x + y
Use the cache
keyword to provide a dict-like object as an initial cache
@memoize(cache={(1, 2): 3}) ... def add(x, y): ... return x + y
Note that the above works as a decorator because memoize
is curried.
It is also possible to provide a key(args, kwargs)
function that calculates keys used for the cache, which receives an args
tuple andkwargs
dict as input, and must return a hashable value. However, the default key function should be sufficient most of the time.
Use key function that ignores extraneous keyword arguments
@memoize(key=lambda args, kwargs: args) ... def add(x, y, verbose=False): ... if verbose: ... print('Calculating %s + %s' % (x, y)) ... return x + y
toolz.functoolz.pipe(data, *funcs)[source]¶
Pipe a value through a sequence of functions
I.e. pipe(data, f, g, h)
is equivalent to h(g(f(data)))
We think of the value as progressing through a pipe of several transformations, much like pipes in UNIX
$ cat data | f | g | h
double = lambda i: 2 * i pipe(3, double, str) '6'
See Also:
compose compose_left thread_first thread_last
toolz.functoolz.thread_first(val, *forms)[source]¶
Thread value through a sequence of functions/forms
def double(x): return 2*x def inc(x): return x + 1 thread_first(1, inc, double) 4
If the function expects more than one input you can specify those inputs in a tuple. The value is used as the first input.
def add(x, y): return x + y def pow(x, y): return x**y thread_first(1, (add, 4), (pow, 2)) # pow(add(1, 4), 2) 25
So in general
thread_first(x, f, (g, y, z))
expands to
g(f(x), y, z)
See Also:
thread_last
toolz.functoolz.thread_last(val, *forms)[source]¶
Thread value through a sequence of functions/forms
def double(x): return 2*x def inc(x): return x + 1 thread_last(1, inc, double) 4
If the function expects more than one input you can specify those inputs in a tuple. The value is used as the last input.
def add(x, y): return x + y def pow(x, y): return x**y thread_last(1, (add, 4), (pow, 2)) # pow(2, add(4, 1)) 32
So in general
thread_last(x, f, (g, y, z))
expands to
g(y, z, f(x))
def iseven(x): ... return x % 2 == 0 list(thread_last([1, 2, 3], (map, inc), (filter, iseven))) [2, 4]
See Also:
thread_first
toolz.dicttoolz.assoc(d, key, value, factory=<class 'dict'>)[source]¶
Return a new dict with new key value pair
New dict has d[key] set to value. Does not modify the initial dictionary.
assoc({'x': 1}, 'x', 2) {'x': 2} assoc({'x': 1}, 'y', 3)
{'x': 1, 'y': 3}
toolz.dicttoolz.assoc_in(d, keys, value, factory=<class 'dict'>)[source]¶
Return a new dict with new, potentially nested, key value pair
purchase = {'name': 'Alice', ... 'order': {'items': ['Apple', 'Orange'], ... 'costs': [0.50, 1.25]}, ... 'credit card': '5555-1234-1234-1234'} assoc_in(purchase, ['order', 'costs'], [0.25, 1.00]) {'credit card': '5555-1234-1234-1234', 'name': 'Alice', 'order': {'costs': [0.25, 1.00], 'items': ['Apple', 'Orange']}}
toolz.dicttoolz.dissoc(d, *keys, **kwargs)[source]¶
Return a new dict with the given key(s) removed.
New dict has d[key] deleted for each supplied key. Does not modify the initial dictionary.
dissoc({'x': 1, 'y': 2}, 'y') {'x': 1} dissoc({'x': 1, 'y': 2}, 'y', 'x') {} dissoc({'x': 1}, 'y') # Ignores missing keys {'x': 1}
toolz.dicttoolz.get_in(keys, coll, default=None, no_default=False)[source]¶
Returns coll[i0][i1]…[iX] where [i0, i1, …, iX]==keys.
If coll[i0][i1]…[iX] cannot be found, returns default
, unlessno_default
is specified, then it raises KeyError or IndexError.
get_in
is a generalization of operator.getitem
for nested data structures such as dictionaries and lists.
transaction = {'name': 'Alice', ... 'purchase': {'items': ['Apple', 'Orange'], ... 'costs': [0.50, 1.25]}, ... 'credit card': '5555-1234-1234-1234'} get_in(['purchase', 'items', 0], transaction) 'Apple' get_in(['name'], transaction) 'Alice' get_in(['purchase', 'total'], transaction) get_in(['purchase', 'items', 'apple'], transaction) get_in(['purchase', 'items', 10], transaction) get_in(['purchase', 'total'], transaction, 0) 0 get_in(['y'], {}, no_default=True) Traceback (most recent call last): ... KeyError: 'y'
See Also:
itertoolz.get operator.getitem
toolz.dicttoolz.itemfilter(predicate, d, factory=<class 'dict'>)[source]¶
Filter items in dictionary by item
def isvalid(item): ... k, v = item ... return k % 2 == 0 and v < 4
d = {1: 2, 2: 3, 3: 4, 4: 5} itemfilter(isvalid, d) {2: 3}
See Also:
keyfilter valfilter itemmap
toolz.dicttoolz.itemmap(func, d, factory=<class 'dict'>)[source]¶
Apply function to items of dictionary
accountids = {"Alice": 10, "Bob": 20} itemmap(reversed, accountids)
{10: "Alice", 20: "Bob"}
See Also:
keymap valmap
toolz.dicttoolz.keyfilter(predicate, d, factory=<class 'dict'>)[source]¶
Filter items in dictionary by key
iseven = lambda x: x % 2 == 0 d = {1: 2, 2: 3, 3: 4, 4: 5} keyfilter(iseven, d) {2: 3, 4: 5}
See Also:
valfilter itemfilter keymap
toolz.dicttoolz.keymap(func, d, factory=<class 'dict'>)[source]¶
Apply function to keys of dictionary
bills = {"Alice": [20, 15, 30], "Bob": [10, 35]} keymap(str.lower, bills)
{'alice': [20, 15, 30], 'bob': [10, 35]}
See Also:
valmap itemmap
toolz.dicttoolz.merge(*dicts, **kwargs)[source]¶
Merge a collection of dictionaries
merge({1: 'one'}, {2: 'two'}) {1: 'one', 2: 'two'}
Later dictionaries have precedence
merge({1: 2, 3: 4}, {3: 3, 4: 4}) {1: 2, 3: 3, 4: 4}
See Also:
merge_with
toolz.dicttoolz.merge_with(func, *dicts, **kwargs)[source]¶
Merge dictionaries and apply function to combined values
A key may occur in more than one dict, and all values mapped from the key will be passed to the function as a list, such as func([val1, val2, …]).
merge_with(sum, {1: 1, 2: 2}, {1: 10, 2: 20}) {1: 11, 2: 22}
merge_with(first, {1: 1, 2: 2}, {2: 20, 3: 30})
{1: 1, 2: 2, 3: 30}
See Also:
merge
toolz.dicttoolz.update_in(d, keys, func, default=None, factory=<class 'dict'>)[source]¶
Update value in a (potentially) nested dictionary
inputs: d - dictionary on which to operate keys - list or tuple giving the location of the value to be changed in d func - function to operate on that value
If keys == [k0,..,kX] and d[k0]..[kX] == v, update_in returns a copy of the original dictionary with v replaced by func(v), but does not mutate the original dictionary.
If k0 is not a key in d, update_in creates nested dictionaries to the depth specified by the keys, with the innermost value set to func(default).
inc = lambda x: x + 1 update_in({'a': 0}, ['a'], inc) {'a': 1}
transaction = {'name': 'Alice', ... 'purchase': {'items': ['Apple', 'Orange'], ... 'costs': [0.50, 1.25]}, ... 'credit card': '5555-1234-1234-1234'} update_in(transaction, ['purchase', 'costs'], sum) {'credit card': '5555-1234-1234-1234', 'name': 'Alice', 'purchase': {'costs': 1.75, 'items': ['Apple', 'Orange']}}
updating a value when k0 is not in d
update_in({}, [1, 2, 3], str, default="bar") {1: {2: {3: 'bar'}}} update_in({1: 'foo'}, [2, 3, 4], inc, 0) {1: 'foo', 2: {3: {4: 1}}}
toolz.dicttoolz.valfilter(predicate, d, factory=<class 'dict'>)[source]¶
Filter items in dictionary by value
iseven = lambda x: x % 2 == 0 d = {1: 2, 2: 3, 3: 4, 4: 5} valfilter(iseven, d) {1: 2, 3: 4}
See Also:
keyfilter itemfilter valmap
toolz.dicttoolz.valmap(func, d, factory=<class 'dict'>)[source]¶
Apply function to values of dictionary
bills = {"Alice": [20, 15, 30], "Bob": [10, 35]} valmap(sum, bills)
{'Alice': 65, 'Bob': 45}
See Also:
keymap itemmap
class toolz.sandbox.core.EqualityHashKey(key, item)[source]¶
Create a hash key that uses equality comparisons between items.
This may be used to create hash keys for otherwise unhashable types:
from toolz import curry EqualityHashDefault = curry(EqualityHashKey, None) set(map(EqualityHashDefault, [[], (), [1], [1]]))
{=[]=, =()=, =[1]=}
Caution: adding N EqualityHashKey
items to a hash container may require O(N**2) operations, not O(N) as for typical hashable types. Therefore, a suitable key function such as tuple
or frozenset
is usually preferred over using EqualityHashKey
if possible.
The key
argument to EqualityHashKey
should be a function or index that returns a hashable object that effectively distinguishes unequal items. This helps avoid the poor scaling that occurs when using the default key. For example, the above example can be improved by using a key function that distinguishes items by length or type:
EqualityHashLen = curry(EqualityHashKey, len) EqualityHashType = curry(EqualityHashKey, type) # this works too set(map(EqualityHashLen, [[], (), [1], [1]]))
{=[]=, =()=, =[1]=}
EqualityHashKey
is convenient to use when a suitable key function is complicated or unavailable. For example, the following returns all unique values based on equality:
from toolz import unique vals = [[], [], (), [1], [1], [2], {}, {}, {}] list(unique(vals, key=EqualityHashDefault)) [[], (), [1], [2], {}]
Warning: don’t change the equality value of an item already in a hash container. Unhashable types are unhashable for a reason. For example:
L1 = [1] ; L2 = [2] s = set(map(EqualityHashDefault, [L1, L2])) s
{=[1]=, =[2]=}
L1[0] = 2 # Don't do this!
s
now has duplicate items! s
{=[2]=, =[2]=}
Although this may appear problematic, immutable data types is a common idiom in functional programming, and``EqualityHashKey`` easily allows the same idiom to be used by convention rather than strict requirement.
See Also:
identity
toolz.sandbox.core.unzip(seq)[source]¶
Inverse of zip
a, b = unzip([('a', 1), ('b', 2)]) list(a) ['a', 'b'] list(b) [1, 2]
Unlike the naive implementation def unzip(seq): zip(*seq)
this implementation can handle an infinite sequence seq
.
Caveats:
- The implementation uses
tee
, and so can use a significant amount of auxiliary storage if the resulting iterators are consumed at different times. - The inner sequence cannot be infinite. In Python 3
zip(*seq)
can be used ifseq
is a finite sequence of infinite sequences.
toolz.sandbox.parallel.fold(binop, seq, default='__no__default__', map=<class 'map'>, chunksize=128, combine=None)[source]¶
Reduce without guarantee of ordered reduction.
Parameters¶
binops
Associative operator. The associative property allows us to leverage a parallel map to perform reductions in parallel.
inputs:
binop
- associative operator. The associative property allows us to
leverage a parallel map to perform reductions in parallel.
seq
- a sequence to be aggregateddefault
- an identity element like 0 for add
or 1 for mul
map
- an implementation of map
. This may be parallel and
determines how work is distributed.
chunksize
- Number of elements of seq
that should be handled
within a single function call
combine
- Binary operator to combine two intermediate results.
If binop
is of type (total, item) -> total then combine
is of type (total, total) -> total Defaults to binop
for common case of operators like add
Fold chunks up the collection into blocks of size chunksize
and then feeds each of these to calls to reduce
. This work is distributed with a call to map
, gathered back and then refolded to finish the computation. In this way fold
specifies only how to chunk up data but leaves the distribution of this work to an externally provided map
function. This function can be sequential or rely on multithreading, multiprocessing, or even distributed solutions.
If map
intends to serialize functions it should be prepared to accept and serialize lambdas. Note that the standard pickle
module fails here.
Example¶
Provide a parallel map to accomplish a parallel sum
from operator import add fold(add, [1, 2, 3, 4], chunksize=2, map=map) 10