API - Toolz (original) (raw)

This page contains a comprehensive list of all functions within toolz. Docstrings should provide sufficient understanding for any individual function.

Itertoolz

accumulate(binop, seq[, initial]) Repeatedly apply binary function to a sequence, accumulating results
concat(seqs) Concatenate zero or more iterables, any of which may be infinite.
concatv(*seqs) Variadic version of concat
cons(el, seq) Add el to beginning of (possibly infinite) sequence seq.
count(seq) Count the number of items in seq
diff(*seqs, **kwargs) Return those items that differ between sequences
drop(n, seq) The sequence following the first n elements
first(seq) The first element in a sequence
frequencies(seq) Find number of occurrences of each value in seq
get(ind, seq[, default]) Get element in a sequence or dict
groupby(key, seq) Group a collection by a key function
interleave(seqs) Interleave a sequence of sequences
interpose(el, seq) Introduce element between each pair of elements in seq
isdistinct(seq) All values in sequence are distinct
isiterable(x) Is x iterable?
iterate(func, x) Repeatedly apply a function func onto an original input
join(leftkey, leftseq, rightkey, rightseq[, ...]) Join two sequences on common attributes
last(seq) The last element in a sequence
mapcat(func, seqs) Apply func to each sequence in seqs, concatenating results.
merge_sorted(*seqs, **kwargs) Merge and sort a collection of sorted collections
nth(n, seq) The nth element in a sequence
partition(n, seq[, pad]) Partition sequence into tuples of length n
partition_all(n, seq) Partition all elements of sequence into tuples of length at most n
peek(seq) Retrieve the next element of a sequence
peekn(n, seq) Retrieve the next n elements of a sequence
pluck(ind, seqs[, default]) plucks an element or several elements from each item in a sequence.
random_sample(prob, seq[, random_state]) Return elements from a sequence with probability of prob
reduceby(key, binop, seq[, init]) Perform a simultaneous groupby and reduction
remove(predicate, seq) Return those items of sequence for which predicate(item) is False
second(seq) The second element in a sequence
sliding_window(n, seq) A sequence of overlapping subsequences
tail(n, seq) The last n elements of a sequence
take(n, seq) The first n elements of a sequence
take_nth(n, seq) Every nth item in seq
topk(k, seq[, key]) Find the k largest elements of a sequence
unique(seq[, key]) Return only unique elements of a sequence

Functoolz

apply(*func_and_args, **kwargs) Applies a function and returns the results
complement(func) Convert a predicate function to its logical complement.
compose(*funcs) Compose functions to operate in series.
compose_left(*funcs) Compose functions to operate in series.
curry(*args, **kwargs) Curry a callable function
do(func, x) Runs func on x, returns x
excepts(exc, func[, handler]) A wrapper around a function to catch exceptions and dispatch to a handler.
flip([func, a, b]) Call the function call with the arguments flipped
identity(x) Identity function.
juxt(*funcs) Creates a function that calls several functions with the same arguments
memoize([func, cache, key]) Cache a function's result for speedy future evaluation
pipe(data, *funcs) Pipe a value through a sequence of functions
thread_first(val, *forms) Thread value through a sequence of functions/forms
thread_last(val, *forms) Thread value through a sequence of functions/forms

Dicttoolz

assoc(d, key, value[, factory]) Return a new dict with new key value pair
assoc_in(d, keys, value[, factory]) Return a new dict with new, potentially nested, key value pair
dissoc(d, *keys, **kwargs) Return a new dict with the given key(s) removed.
get_in(keys, coll[, default, no_default]) Returns coll[i0][i1]...[iX] where [i0, i1, ..., iX]==keys.
itemfilter(predicate, d[, factory]) Filter items in dictionary by item
itemmap(func, d[, factory]) Apply function to items of dictionary
keyfilter(predicate, d[, factory]) Filter items in dictionary by key
keymap(func, d[, factory]) Apply function to keys of dictionary
merge(*dicts, **kwargs) Merge a collection of dictionaries
merge_with(func, *dicts, **kwargs) Merge dictionaries and apply function to combined values
update_in(d, keys, func[, default, factory]) Update value in a (potentially) nested dictionary
valfilter(predicate, d[, factory]) Filter items in dictionary by value
valmap(func, d[, factory]) Apply function to values of dictionary

Recipes

countby(key, seq) Count elements of a collection by a key function
partitionby(func, seq) Partition a sequence according to a function

Sandbox

parallel.fold(binop, seq[, default, map, ...]) Reduce without guarantee of ordered reduction.
core.EqualityHashKey(key, item) Create a hash key that uses equality comparisons between items.
core.unzip(seq) Inverse of zip

Definitions

toolz.itertoolz.accumulate(binop, seq, initial='__no__default__')[source]

Repeatedly apply binary function to a sequence, accumulating results

from operator import add, mul list(accumulate(add, [1, 2, 3, 4, 5])) [1, 3, 6, 10, 15] list(accumulate(mul, [1, 2, 3, 4, 5])) [1, 2, 6, 24, 120]

Accumulate is similar to reduce and is good for making functions like cumulative sum:

from functools import partial, reduce sum = partial(reduce, add) cumsum = partial(accumulate, add)

Accumulate also takes an optional argument that will be used as the first value. This is similar to reduce.

list(accumulate(add, [1, 2, 3], -1)) [-1, 0, 2, 5] list(accumulate(add, [], 1)) [1]

See Also:

itertools.accumulate : In standard itertools for Python 3.2+

toolz.itertoolz.concat(seqs)[source]

Concatenate zero or more iterables, any of which may be infinite.

An infinite sequence will prevent the rest of the arguments from being included.

We use chain.from_iterable rather than chain(*seqs) so that seqs can be a generator.

list(concat([[], [1], [2, 3]])) [1, 2, 3]

See also:

itertools.chain.from_iterable equivalent

toolz.itertoolz.concatv(*seqs)[source]

Variadic version of concat

list(concatv([], ["a"], ["b", "c"])) ['a', 'b', 'c']

See also:

itertools.chain

toolz.itertoolz.cons(el, seq)[source]

Add el to beginning of (possibly infinite) sequence seq.

list(cons(1, [2, 3])) [1, 2, 3]

toolz.itertoolz.count(seq)[source]

Count the number of items in seq

Like the builtin len but works on lazy sequences.

Not to be confused with itertools.count

See also:

len

toolz.itertoolz.diff(*seqs, **kwargs)[source]

Return those items that differ between sequences

list(diff([1, 2, 3], [1, 2, 10, 100])) [(3, 10)]

Shorter sequences may be padded with a default value:

list(diff([1, 2, 3], [1, 2, 10, 100], default=None)) [(3, 10), (None, 100)]

A key function may also be applied to each item to use during comparisons:

list(diff(['apples', 'bananas'], ['Apples', 'Oranges'], key=str.lower)) [('bananas', 'Oranges')]

toolz.itertoolz.drop(n, seq)[source]

The sequence following the first n elements

list(drop(2, [10, 20, 30, 40, 50])) [30, 40, 50]

See Also:

take tail

toolz.itertoolz.first(seq)[source]

The first element in a sequence

toolz.itertoolz.frequencies(seq)[source]

Find number of occurrences of each value in seq

frequencies(['cat', 'cat', 'ox', 'pig', 'pig', 'cat'])
{'cat': 3, 'ox': 1, 'pig': 2}

See Also:

countby groupby

toolz.itertoolz.get(ind, seq, default='__no__default__')[source]

Get element in a sequence or dict

Provides standard indexing

get(1, 'ABC') # Same as 'ABC'[1] 'B'

Pass a list to get multiple values

get([1, 2], 'ABC') # ('ABC'[1], 'ABC'[2]) ('B', 'C')

Works on any value that supports indexing/getitem For example here we see that it works with dictionaries

phonebook = {'Alice': '555-1234', ... 'Bob': '555-5678', ... 'Charlie':'555-9999'} get('Alice', phonebook) '555-1234'

get(['Alice', 'Bob'], phonebook) ('555-1234', '555-5678')

Provide a default for missing values

get(['Alice', 'Dennis'], phonebook, None) ('555-1234', None)

See Also:

pluck

toolz.itertoolz.groupby(key, seq)[source]

Group a collection by a key function

names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank'] groupby(len, names)
{3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}

iseven = lambda x: x % 2 == 0 groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8])
{False: [1, 3, 5, 7], True: [2, 4, 6, 8]}

Non-callable keys imply grouping on a member.

groupby('gender', [{'name': 'Alice', 'gender': 'F'}, ... {'name': 'Bob', 'gender': 'M'}, ... {'name': 'Charlie', 'gender': 'M'}]) {'F': [{'gender': 'F', 'name': 'Alice'}], 'M': [{'gender': 'M', 'name': 'Bob'}, {'gender': 'M', 'name': 'Charlie'}]}

Not to be confused with itertools.groupby

See Also:

countby

toolz.itertoolz.interleave(seqs)[source]

Interleave a sequence of sequences

list(interleave([[1, 2], [3, 4]])) [1, 3, 2, 4]

''.join(interleave(('ABC', 'XY'))) 'AXBYC'

Both the individual sequences and the sequence of sequences may be infinite

Returns a lazy iterator

toolz.itertoolz.interpose(el, seq)[source]

Introduce element between each pair of elements in seq

list(interpose("a", [1, 2, 3])) [1, 'a', 2, 'a', 3]

toolz.itertoolz.isdistinct(seq)[source]

All values in sequence are distinct

isdistinct([1, 2, 3]) True isdistinct([1, 2, 1]) False

isdistinct("Hello") False isdistinct("World") True

toolz.itertoolz.isiterable(x)[source]

Is x iterable?

isiterable([1, 2, 3]) True isiterable('abc') True isiterable(5) False

toolz.itertoolz.iterate(func, x)[source]

Repeatedly apply a function func onto an original input

Yields x, then func(x), then func(func(x)), then func(func(func(x))), etc..

def inc(x): return x + 1 counter = iterate(inc, 0) next(counter) 0 next(counter) 1 next(counter) 2

double = lambda x: x * 2 powers_of_two = iterate(double, 1) next(powers_of_two) 1 next(powers_of_two) 2 next(powers_of_two) 4 next(powers_of_two) 8

toolz.itertoolz.join(leftkey, leftseq, rightkey, rightseq, left_default='__no__default__', right_default='__no__default__')[source]

Join two sequences on common attributes

This is a semi-streaming operation. The LEFT sequence is fully evaluated and placed into memory. The RIGHT sequence is evaluated lazily and so can be arbitrarily large.

(Note: If right_default is defined, then unique keys of rightseq

will also be stored in memory.)

friends = [('Alice', 'Edith'), ... ('Alice', 'Zhao'), ... ('Edith', 'Alice'), ... ('Zhao', 'Alice'), ... ('Zhao', 'Edith')]

cities = [('Alice', 'NYC'), ... ('Alice', 'Chicago'), ... ('Dan', 'Sydney'), ... ('Edith', 'Paris'), ... ('Edith', 'Berlin'), ... ('Zhao', 'Shanghai')]

Vacation opportunities

In what cities do people have friends?

result = join(second, friends, ... first, cities) for ((a, b), (c, d)) in sorted(unique(result)): ... print((a, d)) ('Alice', 'Berlin') ('Alice', 'Paris') ('Alice', 'Shanghai') ('Edith', 'Chicago') ('Edith', 'NYC') ('Zhao', 'Chicago') ('Zhao', 'NYC') ('Zhao', 'Berlin') ('Zhao', 'Paris')

Specify outer joins with keyword arguments left_default and/orright_default. Here is a full outer join in which unmatched elements are paired with None.

identity = lambda x: x list(join(identity, [1, 2, 3], ... identity, [2, 3, 4], ... left_default=None, right_default=None)) [(2, 2), (3, 3), (None, 4), (1, None)]

Usually the key arguments are callables to be applied to the sequences. If the keys are not obviously callable then it is assumed that indexing was intended, e.g. the following is a legal change. The join is implemented as a hash join and the keys of leftseq must be hashable. Additionally, if right_default is defined, then keys of rightseq must also be hashable.

result = join(second, friends, first, cities)

result = join(1, friends, 0, cities)

toolz.itertoolz.last(seq)[source]

The last element in a sequence

toolz.itertoolz.mapcat(func, seqs)[source]

Apply func to each sequence in seqs, concatenating results.

list(mapcat(lambda s: [c.upper() for c in s], ... [["a", "b"], ["c", "d", "e"]])) ['A', 'B', 'C', 'D', 'E']

toolz.itertoolz.merge_sorted(*seqs, **kwargs)[source]

Merge and sort a collection of sorted collections

This works lazily and only keeps one value from each iterable in memory.

list(merge_sorted([1, 3, 5], [2, 4, 6])) [1, 2, 3, 4, 5, 6]

''.join(merge_sorted('abc', 'abc', 'abc')) 'aaabbbccc'

The “key” function used to sort the input may be passed as a keyword.

list(merge_sorted([2, 3], [1, 3], key=lambda x: x // 3)) [2, 1, 3, 3]

toolz.itertoolz.nth(n, seq)[source]

The nth element in a sequence

toolz.itertoolz.partition(n, seq, pad='__no__pad__')[source]

Partition sequence into tuples of length n

list(partition(2, [1, 2, 3, 4])) [(1, 2), (3, 4)]

If the length of seq is not evenly divisible by n, the final tuple is dropped if pad is not specified, or filled to length n by pad:

list(partition(2, [1, 2, 3, 4, 5])) [(1, 2), (3, 4)]

list(partition(2, [1, 2, 3, 4, 5], pad=None)) [(1, 2), (3, 4), (5, None)]

See Also:

partition_all

toolz.itertoolz.partition_all(n, seq)[source]

Partition all elements of sequence into tuples of length at most n

The final tuple may be shorter to accommodate extra elements.

list(partition_all(2, [1, 2, 3, 4])) [(1, 2), (3, 4)]

list(partition_all(2, [1, 2, 3, 4, 5])) [(1, 2), (3, 4), (5,)]

See Also:

partition

toolz.itertoolz.peek(seq)[source]

Retrieve the next element of a sequence

Returns the first element and an iterable equivalent to the original sequence, still having the element retrieved.

seq = [0, 1, 2, 3, 4] first, seq = peek(seq) first 0 list(seq) [0, 1, 2, 3, 4]

toolz.itertoolz.peekn(n, seq)[source]

Retrieve the next n elements of a sequence

Returns a tuple of the first n elements and an iterable equivalent to the original, still having the elements retrieved.

seq = [0, 1, 2, 3, 4] first_two, seq = peekn(2, seq) first_two (0, 1) list(seq) [0, 1, 2, 3, 4]

toolz.itertoolz.pluck(ind, seqs, default='__no__default__')[source]

plucks an element or several elements from each item in a sequence.

pluck maps itertoolz.get over a sequence and returns one or more elements of each item in the sequence.

This is equivalent to running map(curried.get(ind), seqs)

ind can be either a single string/index or a list of strings/indices.seqs should be sequence containing sequences or dicts.

e.g.

data = [{'id': 1, 'name': 'Cheese'}, {'id': 2, 'name': 'Pies'}] list(pluck('name', data)) ['Cheese', 'Pies'] list(pluck([0, 1], [[1, 2, 3], [4, 5, 7]])) [(1, 2), (4, 5)]

See Also:

get map

toolz.itertoolz.random_sample(prob, seq, random_state=None)[source]

Return elements from a sequence with probability of prob

Returns a lazy iterator of random items from seq.

random_sample considers each item independently and without replacement. See below how the first time it returned 13 items and the next time it returned 6 items.

seq = list(range(100)) list(random_sample(0.1, seq)) [6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95] list(random_sample(0.1, seq)) [6, 44, 54, 61, 69, 94]

Providing an integer seed for random_state will result in deterministic sampling. Given the same seed it will return the same sample every time.

list(random_sample(0.1, seq, random_state=2016)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98] list(random_sample(0.1, seq, random_state=2016)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]

random_state can also be any object with a method random that returns floats between 0.0 and 1.0 (exclusive).

from random import Random randobj = Random(2016) list(random_sample(0.1, seq, random_state=randobj)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]

toolz.itertoolz.reduceby(key, binop, seq, init='__no__default__')[source]

Perform a simultaneous groupby and reduction

The computation:

result = reduceby(key, binop, seq, init)

is equivalent to the following:

def reduction(group):
... return reduce(binop, group, init)

groups = groupby(key, seq)
result = valmap(reduction, groups)

But the former does not build the intermediate groups, allowing it to operate in much less space. This makes it suitable for larger datasets that do not fit comfortably in memory

The init keyword argument is the default initialization of the reduction. This can be either a constant value like 0 or a callable like lambda : 0 as might be used in defaultdict.

Simple Examples

from operator import add, mul iseven = lambda x: x % 2 == 0

data = [1, 2, 3, 4, 5]

reduceby(iseven, add, data)
{False: 9, True: 6}

reduceby(iseven, mul, data)
{False: 15, True: 8}

Complex Example

projects = [{'name': 'build roads', 'state': 'CA', 'cost': 1000000}, ... {'name': 'fight crime', 'state': 'IL', 'cost': 100000}, ... {'name': 'help farmers', 'state': 'IL', 'cost': 2000000}, ... {'name': 'help farmers', 'state': 'CA', 'cost': 200000}]

reduceby('state',
... lambda acc, x: acc + x['cost'], ... projects, 0) {'CA': 1200000, 'IL': 2100000}

Example Using init

def set_add(s, i): ... s.add(i) ... return s

reduceby(iseven, set_add, [1, 2, 3, 4, 1, 2, 3], set)
{True: set([2, 4]), False: set([1, 3])}

toolz.itertoolz.remove(predicate, seq)[source]

Return those items of sequence for which predicate(item) is False

def iseven(x): ... return x % 2 == 0 list(remove(iseven, [1, 2, 3, 4])) [1, 3]

toolz.itertoolz.second(seq)[source]

The second element in a sequence

toolz.itertoolz.sliding_window(n, seq)[source]

A sequence of overlapping subsequences

list(sliding_window(2, [1, 2, 3, 4])) [(1, 2), (2, 3), (3, 4)]

This function creates a sliding window suitable for transformations like sliding means / smoothing

mean = lambda seq: float(sum(seq)) / len(seq) list(map(mean, sliding_window(2, [1, 2, 3, 4]))) [1.5, 2.5, 3.5]

toolz.itertoolz.tail(n, seq)[source]

The last n elements of a sequence

tail(2, [10, 20, 30, 40, 50]) [40, 50]

See Also:

drop take

toolz.itertoolz.take(n, seq)[source]

The first n elements of a sequence

list(take(2, [10, 20, 30, 40, 50])) [10, 20]

See Also:

drop tail

toolz.itertoolz.take_nth(n, seq)[source]

Every nth item in seq

list(take_nth(2, [10, 20, 30, 40, 50])) [10, 30, 50]

toolz.itertoolz.topk(k, seq, key=None)[source]

Find the k largest elements of a sequence

Operates lazily in n*log(k) time

topk(2, [1, 100, 10, 1000]) (1000, 100)

Use a key function to change sorted order

topk(2, ['Alice', 'Bob', 'Charlie', 'Dan'], key=len) ('Charlie', 'Alice')

See also:

heapq.nlargest

toolz.itertoolz.unique(seq, key=None)[source]

Return only unique elements of a sequence

tuple(unique((1, 2, 3))) (1, 2, 3) tuple(unique((1, 2, 1, 3))) (1, 2, 3)

Uniqueness can be defined by key keyword

tuple(unique(['cat', 'mouse', 'dog', 'hen'], key=len)) ('cat', 'mouse')

toolz.recipes.countby(key, seq)[source]

Count elements of a collection by a key function

countby(len, ['cat', 'mouse', 'dog']) {3: 2, 5: 1}

def iseven(x): return x % 2 == 0 countby(iseven, [1, 2, 3])
{True: 1, False: 2}

See Also:

groupby

toolz.recipes.partitionby(func, seq)[source]

Partition a sequence according to a function

Partition s into a sequence of lists such that, when traversings, every time the output of func changes a new list is started and that and subsequent items are collected into that list.

is_space = lambda c: c == " " list(partitionby(is_space, "I have space")) [('I',), (' ',), ('h', 'a', 'v', 'e'), (' ',), ('s', 'p', 'a', 'c', 'e')]

is_large = lambda x: x > 10 list(partitionby(is_large, [1, 2, 1, 99, 88, 33, 99, -1, 5])) [(1, 2, 1), (99, 88, 33, 99), (-1, 5)]

See also:

partition groupby itertools.groupby

toolz.functoolz.apply(*func_and_args, **kwargs)[source]

Applies a function and returns the results

def double(x): return 2*x def inc(x): return x + 1 apply(double, 5) 10

tuple(map(apply, [double, inc, double], [10, 500, 8000])) (20, 501, 16000)

toolz.functoolz.complement(func)[source]

Convert a predicate function to its logical complement.

In other words, return a function that, for inputs that normally yield True, yields False, and vice-versa.

def iseven(n): return n % 2 == 0 isodd = complement(iseven) iseven(2) True isodd(2) False

toolz.functoolz.compose(*funcs)[source]

Compose functions to operate in series.

Returns a function that applies other functions in sequence.

Functions are applied from right to left so thatcompose(f, g, h)(x, y) is the same as f(g(h(x, y))).

If no arguments are provided, the identity function (f(x) = x) is returned.

inc = lambda i: i + 1 compose(str, inc)(3) '4'

See Also:

compose_left pipe

toolz.functoolz.compose_left(*funcs)[source]

Compose functions to operate in series.

Returns a function that applies other functions in sequence.

Functions are applied from left to right so thatcompose_left(f, g, h)(x, y) is the same as h(g(f(x, y))).

If no arguments are provided, the identity function (f(x) = x) is returned.

inc = lambda i: i + 1 compose_left(inc, str)(3) '4'

See Also:

compose pipe

class toolz.functoolz.curry(*args, **kwargs)[source]

Curry a callable function

Enables partial application of arguments through calling a function with an incomplete set of arguments.

def mul(x, y): ... return x * y mul = curry(mul)

double = mul(2) double(10) 20

Also supports keyword arguments

@curry # Can use curry as a decorator ... def f(x, y, a=10): ... return a * (x + y)

add = f(a=1) add(2, 3) 5

See Also:

toolz.curried - namespace of curried functions

https://toolz.readthedocs.io/en/latest/curry.html

toolz.functoolz.do(func, x)[source]

Runs func on x, returns x

Because the results of func are not returned, only the side effects of func are relevant.

Logging functions can be made by composing do with a storage function like list.append or file.write

from toolz import compose from toolz.curried import do

log = [] inc = lambda x: x + 1 inc = compose(inc, do(log.append)) inc(1) 2 inc(11) 12 log [1, 11]

class toolz.functoolz.excepts(exc, func, handler=<function return_none>)[source]

A wrapper around a function to catch exceptions and dispatch to a handler.

This is like a functional try/except block, in the same way that ifexprs are functional if/else blocks.

Examples

excepting = excepts( ... ValueError, ... lambda a: [1, 2].index(a), ... lambda _: -1, ... ) excepting(1) 0 excepting(3) -1

Multiple exceptions and default except clause.

excepting = excepts((IndexError, KeyError), lambda a: a[0]) excepting([]) excepting([1]) 1 excepting({}) excepting({0: 1}) 1

toolz.functoolz.flip(func='__no__default__', a='__no__default__', b='__no__default__')[source]

Call the function call with the arguments flipped

This function is curried.

def div(a, b): ... return a // b ... flip(div, 2, 6) 3 div_by_two = flip(div, 2) div_by_two(4) 2

This is particularly useful for built in functions and functions defined in C extensions that accept positional only arguments. For example: isinstance, issubclass.

data = [1, 'a', 'b', 2, 1.5, object(), 3] only_ints = list(filter(flip(isinstance, int), data)) only_ints [1, 2, 3]

toolz.functoolz.identity(x)[source]

Identity function. Return x

class toolz.functoolz.juxt(*funcs)[source]

Creates a function that calls several functions with the same arguments

Takes several functions and returns a function that applies its arguments to each of those functions then returns a tuple of the results.

Name comes from juxtaposition: the fact of two things being seen or placed close together with contrasting effect.

inc = lambda x: x + 1 double = lambda x: x * 2 juxt(inc, double)(10) (11, 20) juxt([inc, double])(10) (11, 20)

toolz.functoolz.memoize(func='__no__default__', cache=None, key=None)[source]

Cache a function’s result for speedy future evaluation

Considerations:

Trades memory for speed. Only use on pure functions.

def add(x, y): return x + y add = memoize(add)

Or use as a decorator

@memoize ... def add(x, y): ... return x + y

Use the cache keyword to provide a dict-like object as an initial cache

@memoize(cache={(1, 2): 3}) ... def add(x, y): ... return x + y

Note that the above works as a decorator because memoize is curried.

It is also possible to provide a key(args, kwargs) function that calculates keys used for the cache, which receives an args tuple andkwargs dict as input, and must return a hashable value. However, the default key function should be sufficient most of the time.

Use key function that ignores extraneous keyword arguments

@memoize(key=lambda args, kwargs: args) ... def add(x, y, verbose=False): ... if verbose: ... print('Calculating %s + %s' % (x, y)) ... return x + y

toolz.functoolz.pipe(data, *funcs)[source]

Pipe a value through a sequence of functions

I.e. pipe(data, f, g, h) is equivalent to h(g(f(data)))

We think of the value as progressing through a pipe of several transformations, much like pipes in UNIX

$ cat data | f | g | h

double = lambda i: 2 * i pipe(3, double, str) '6'

See Also:

compose compose_left thread_first thread_last

toolz.functoolz.thread_first(val, *forms)[source]

Thread value through a sequence of functions/forms

def double(x): return 2*x def inc(x): return x + 1 thread_first(1, inc, double) 4

If the function expects more than one input you can specify those inputs in a tuple. The value is used as the first input.

def add(x, y): return x + y def pow(x, y): return x**y thread_first(1, (add, 4), (pow, 2)) # pow(add(1, 4), 2) 25

So in general

thread_first(x, f, (g, y, z))

expands to

g(f(x), y, z)

See Also:

thread_last

toolz.functoolz.thread_last(val, *forms)[source]

Thread value through a sequence of functions/forms

def double(x): return 2*x def inc(x): return x + 1 thread_last(1, inc, double) 4

If the function expects more than one input you can specify those inputs in a tuple. The value is used as the last input.

def add(x, y): return x + y def pow(x, y): return x**y thread_last(1, (add, 4), (pow, 2)) # pow(2, add(4, 1)) 32

So in general

thread_last(x, f, (g, y, z))

expands to

g(y, z, f(x))

def iseven(x): ... return x % 2 == 0 list(thread_last([1, 2, 3], (map, inc), (filter, iseven))) [2, 4]

See Also:

thread_first

toolz.dicttoolz.assoc(d, key, value, factory=<class 'dict'>)[source]

Return a new dict with new key value pair

New dict has d[key] set to value. Does not modify the initial dictionary.

assoc({'x': 1}, 'x', 2) {'x': 2} assoc({'x': 1}, 'y', 3)
{'x': 1, 'y': 3}

toolz.dicttoolz.assoc_in(d, keys, value, factory=<class 'dict'>)[source]

Return a new dict with new, potentially nested, key value pair

purchase = {'name': 'Alice', ... 'order': {'items': ['Apple', 'Orange'], ... 'costs': [0.50, 1.25]}, ... 'credit card': '5555-1234-1234-1234'} assoc_in(purchase, ['order', 'costs'], [0.25, 1.00]) {'credit card': '5555-1234-1234-1234', 'name': 'Alice', 'order': {'costs': [0.25, 1.00], 'items': ['Apple', 'Orange']}}

toolz.dicttoolz.dissoc(d, *keys, **kwargs)[source]

Return a new dict with the given key(s) removed.

New dict has d[key] deleted for each supplied key. Does not modify the initial dictionary.

dissoc({'x': 1, 'y': 2}, 'y') {'x': 1} dissoc({'x': 1, 'y': 2}, 'y', 'x') {} dissoc({'x': 1}, 'y') # Ignores missing keys {'x': 1}

toolz.dicttoolz.get_in(keys, coll, default=None, no_default=False)[source]

Returns coll[i0][i1]…[iX] where [i0, i1, …, iX]==keys.

If coll[i0][i1]…[iX] cannot be found, returns default, unlessno_default is specified, then it raises KeyError or IndexError.

get_in is a generalization of operator.getitem for nested data structures such as dictionaries and lists.

transaction = {'name': 'Alice', ... 'purchase': {'items': ['Apple', 'Orange'], ... 'costs': [0.50, 1.25]}, ... 'credit card': '5555-1234-1234-1234'} get_in(['purchase', 'items', 0], transaction) 'Apple' get_in(['name'], transaction) 'Alice' get_in(['purchase', 'total'], transaction) get_in(['purchase', 'items', 'apple'], transaction) get_in(['purchase', 'items', 10], transaction) get_in(['purchase', 'total'], transaction, 0) 0 get_in(['y'], {}, no_default=True) Traceback (most recent call last): ... KeyError: 'y'

See Also:

itertoolz.get operator.getitem

toolz.dicttoolz.itemfilter(predicate, d, factory=<class 'dict'>)[source]

Filter items in dictionary by item

def isvalid(item): ... k, v = item ... return k % 2 == 0 and v < 4

d = {1: 2, 2: 3, 3: 4, 4: 5} itemfilter(isvalid, d) {2: 3}

See Also:

keyfilter valfilter itemmap

toolz.dicttoolz.itemmap(func, d, factory=<class 'dict'>)[source]

Apply function to items of dictionary

accountids = {"Alice": 10, "Bob": 20} itemmap(reversed, accountids)
{10: "Alice", 20: "Bob"}

See Also:

keymap valmap

toolz.dicttoolz.keyfilter(predicate, d, factory=<class 'dict'>)[source]

Filter items in dictionary by key

iseven = lambda x: x % 2 == 0 d = {1: 2, 2: 3, 3: 4, 4: 5} keyfilter(iseven, d) {2: 3, 4: 5}

See Also:

valfilter itemfilter keymap

toolz.dicttoolz.keymap(func, d, factory=<class 'dict'>)[source]

Apply function to keys of dictionary

bills = {"Alice": [20, 15, 30], "Bob": [10, 35]} keymap(str.lower, bills)
{'alice': [20, 15, 30], 'bob': [10, 35]}

See Also:

valmap itemmap

toolz.dicttoolz.merge(*dicts, **kwargs)[source]

Merge a collection of dictionaries

merge({1: 'one'}, {2: 'two'}) {1: 'one', 2: 'two'}

Later dictionaries have precedence

merge({1: 2, 3: 4}, {3: 3, 4: 4}) {1: 2, 3: 3, 4: 4}

See Also:

merge_with

toolz.dicttoolz.merge_with(func, *dicts, **kwargs)[source]

Merge dictionaries and apply function to combined values

A key may occur in more than one dict, and all values mapped from the key will be passed to the function as a list, such as func([val1, val2, …]).

merge_with(sum, {1: 1, 2: 2}, {1: 10, 2: 20}) {1: 11, 2: 22}

merge_with(first, {1: 1, 2: 2}, {2: 20, 3: 30})
{1: 1, 2: 2, 3: 30}

See Also:

merge

toolz.dicttoolz.update_in(d, keys, func, default=None, factory=<class 'dict'>)[source]

Update value in a (potentially) nested dictionary

inputs: d - dictionary on which to operate keys - list or tuple giving the location of the value to be changed in d func - function to operate on that value

If keys == [k0,..,kX] and d[k0]..[kX] == v, update_in returns a copy of the original dictionary with v replaced by func(v), but does not mutate the original dictionary.

If k0 is not a key in d, update_in creates nested dictionaries to the depth specified by the keys, with the innermost value set to func(default).

inc = lambda x: x + 1 update_in({'a': 0}, ['a'], inc) {'a': 1}

transaction = {'name': 'Alice', ... 'purchase': {'items': ['Apple', 'Orange'], ... 'costs': [0.50, 1.25]}, ... 'credit card': '5555-1234-1234-1234'} update_in(transaction, ['purchase', 'costs'], sum) {'credit card': '5555-1234-1234-1234', 'name': 'Alice', 'purchase': {'costs': 1.75, 'items': ['Apple', 'Orange']}}

updating a value when k0 is not in d

update_in({}, [1, 2, 3], str, default="bar") {1: {2: {3: 'bar'}}} update_in({1: 'foo'}, [2, 3, 4], inc, 0) {1: 'foo', 2: {3: {4: 1}}}

toolz.dicttoolz.valfilter(predicate, d, factory=<class 'dict'>)[source]

Filter items in dictionary by value

iseven = lambda x: x % 2 == 0 d = {1: 2, 2: 3, 3: 4, 4: 5} valfilter(iseven, d) {1: 2, 3: 4}

See Also:

keyfilter itemfilter valmap

toolz.dicttoolz.valmap(func, d, factory=<class 'dict'>)[source]

Apply function to values of dictionary

bills = {"Alice": [20, 15, 30], "Bob": [10, 35]} valmap(sum, bills)
{'Alice': 65, 'Bob': 45}

See Also:

keymap itemmap

class toolz.sandbox.core.EqualityHashKey(key, item)[source]

Create a hash key that uses equality comparisons between items.

This may be used to create hash keys for otherwise unhashable types:

from toolz import curry EqualityHashDefault = curry(EqualityHashKey, None) set(map(EqualityHashDefault, [[], (), [1], [1]]))
{=[]=, =()=, =[1]=}

Caution: adding N EqualityHashKey items to a hash container may require O(N**2) operations, not O(N) as for typical hashable types. Therefore, a suitable key function such as tuple or frozensetis usually preferred over using EqualityHashKey if possible.

The key argument to EqualityHashKey should be a function or index that returns a hashable object that effectively distinguishes unequal items. This helps avoid the poor scaling that occurs when using the default key. For example, the above example can be improved by using a key function that distinguishes items by length or type:

EqualityHashLen = curry(EqualityHashKey, len) EqualityHashType = curry(EqualityHashKey, type) # this works too set(map(EqualityHashLen, [[], (), [1], [1]]))
{=[]=, =()=, =[1]=}

EqualityHashKey is convenient to use when a suitable key function is complicated or unavailable. For example, the following returns all unique values based on equality:

from toolz import unique vals = [[], [], (), [1], [1], [2], {}, {}, {}] list(unique(vals, key=EqualityHashDefault)) [[], (), [1], [2], {}]

Warning: don’t change the equality value of an item already in a hash container. Unhashable types are unhashable for a reason. For example:

L1 = [1] ; L2 = [2] s = set(map(EqualityHashDefault, [L1, L2])) s
{=[1]=, =[2]=}

L1[0] = 2 # Don't do this! s now has duplicate items! s
{=[2]=, =[2]=}

Although this may appear problematic, immutable data types is a common idiom in functional programming, and``EqualityHashKey`` easily allows the same idiom to be used by convention rather than strict requirement.

See Also:

identity

toolz.sandbox.core.unzip(seq)[source]

Inverse of zip

a, b = unzip([('a', 1), ('b', 2)]) list(a) ['a', 'b'] list(b) [1, 2]

Unlike the naive implementation def unzip(seq): zip(*seq) this implementation can handle an infinite sequence seq.

Caveats:

toolz.sandbox.parallel.fold(binop, seq, default='__no__default__', map=<class 'map'>, chunksize=128, combine=None)[source]

Reduce without guarantee of ordered reduction.

Parameters

binops

Associative operator. The associative property allows us to leverage a parallel map to perform reductions in parallel.

inputs:

binop - associative operator. The associative property allows us to

leverage a parallel map to perform reductions in parallel.

seq - a sequence to be aggregateddefault - an identity element like 0 for add or 1 for mul

map - an implementation of map. This may be parallel and

determines how work is distributed.

chunksize - Number of elements of seq that should be handled

within a single function call

combine - Binary operator to combine two intermediate results.

If binop is of type (total, item) -> total then combine is of type (total, total) -> total Defaults to binop for common case of operators like add

Fold chunks up the collection into blocks of size chunksize and then feeds each of these to calls to reduce. This work is distributed with a call to map, gathered back and then refolded to finish the computation. In this way fold specifies only how to chunk up data but leaves the distribution of this work to an externally provided mapfunction. This function can be sequential or rely on multithreading, multiprocessing, or even distributed solutions.

If map intends to serialize functions it should be prepared to accept and serialize lambdas. Note that the standard pickle module fails here.

Example

Provide a parallel map to accomplish a parallel sum

from operator import add fold(add, [1, 2, 3, 4], chunksize=2, map=map) 10