fw hn | Tsinghua University (original) (raw)

Uploads

Papers by fw hn

Research paper thumbnail of COEFFICIENT MULTIPLIERS ON BANACH SPACES OF ANALYTIC FUNCTIONS

Research paper thumbnail of Effects of temperature and nutrient availability on plasma membrane lipid composition in Scots pine roots during growth initiation

Research paper thumbnail of Bounded rigidity of manifolds and asymptotic dimension growth

Research paper thumbnail of Hecke algebras of classical type and their representation type

The proof uses the Fock space theory, which was developed for proving the LLT conjecture (see AMS... more The proof uses the Fock space theory, which was developed for proving the LLT conjecture (see AMS Univ. Lec. Ser. 26), the Specht module theory, which was developed by Dipper, James and Murphy in this case, and results from the theory of finite dimensional algebras.

Research paper thumbnail of The Jacobian conjecture: Reduction of degree and formal expansion of the inverse

Bulletin of The American Mathematical Society, 1982

Research paper thumbnail of Nonlinear diffusion with a bounded stationary level surface

Annales De L Institut Henri Poincare-analyse Non Lineaire, 2010

We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with b... more We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with bounded boundary of class C2C2. Suppose that, initially, the container is empty and, at all times, the substance at its boundary is kept at density 1. We show that, if the container contains a proper C2C2-subdomain on whose boundary the substance has constant density at each given time, then the boundary of the container must be a sphere. We also consider nonlinear diffusion in the whole RNRN of some substance whose density is initially a characteristic function of the complement of a domain with bounded C2C2 boundary, and obtain similar results. These results are also extended to the heat flow in the sphere SNSN and the hyperbolic space HNHN.Nous considérons la diffusion non linéaire d'une substance dans un récipient (pas nécessairement borné) avec frontière bornée de classe C2C2. Supposons qu'initialement, le récipient soit vide et, à sa frontière, la densité de la substance soit gardée à tout moment égale à 1. Nous montrons que, si le récipient contient un sous-domaine C2C2 propre à la frontière duquel la substance est gardée à tout moment à densité constante, alors la frontière du récipient doit être une sphère. Nous considérons aussi la diffusion non linéaire dans tout RNRN d'une substance dont la densité est initialement une fonction caractéristique du complémentaire d'un domaine ayant la frontière bornée et C2C2, et nous obtenons des résultats semblables. Ces résultats sont aussi généralisés au cas du flux de chaleur dans la sphère SNSN et l'espace hyperbolique HNHN.

Research paper thumbnail of GALOIS MODULE STRUCTURE OF GALOIS COHOMOLOGY

Research paper thumbnail of COEFFICIENT MULTIPLIERS ON BANACH SPACES OF ANALYTIC FUNCTIONS

Research paper thumbnail of Effects of temperature and nutrient availability on plasma membrane lipid composition in Scots pine roots during growth initiation

Research paper thumbnail of Bounded rigidity of manifolds and asymptotic dimension growth

Research paper thumbnail of Hecke algebras of classical type and their representation type

The proof uses the Fock space theory, which was developed for proving the LLT conjecture (see AMS... more The proof uses the Fock space theory, which was developed for proving the LLT conjecture (see AMS Univ. Lec. Ser. 26), the Specht module theory, which was developed by Dipper, James and Murphy in this case, and results from the theory of finite dimensional algebras.

Research paper thumbnail of The Jacobian conjecture: Reduction of degree and formal expansion of the inverse

Bulletin of The American Mathematical Society, 1982

Research paper thumbnail of Nonlinear diffusion with a bounded stationary level surface

Annales De L Institut Henri Poincare-analyse Non Lineaire, 2010

We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with b... more We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with bounded boundary of class C2C2. Suppose that, initially, the container is empty and, at all times, the substance at its boundary is kept at density 1. We show that, if the container contains a proper C2C2-subdomain on whose boundary the substance has constant density at each given time, then the boundary of the container must be a sphere. We also consider nonlinear diffusion in the whole RNRN of some substance whose density is initially a characteristic function of the complement of a domain with bounded C2C2 boundary, and obtain similar results. These results are also extended to the heat flow in the sphere SNSN and the hyperbolic space HNHN.Nous considérons la diffusion non linéaire d'une substance dans un récipient (pas nécessairement borné) avec frontière bornée de classe C2C2. Supposons qu'initialement, le récipient soit vide et, à sa frontière, la densité de la substance soit gardée à tout moment égale à 1. Nous montrons que, si le récipient contient un sous-domaine C2C2 propre à la frontière duquel la substance est gardée à tout moment à densité constante, alors la frontière du récipient doit être une sphère. Nous considérons aussi la diffusion non linéaire dans tout RNRN d'une substance dont la densité est initialement une fonction caractéristique du complémentaire d'un domaine ayant la frontière bornée et C2C2, et nous obtenons des résultats semblables. Ces résultats sont aussi généralisés au cas du flux de chaleur dans la sphère SNSN et l'espace hyperbolique HNHN.

Research paper thumbnail of GALOIS MODULE STRUCTURE OF GALOIS COHOMOLOGY

Log In