Amin Ebrahimi | Delft University of Technology (original) (raw)

Papers by Amin Ebrahimi

Research paper thumbnail of Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks

Biomedical Physics & Engineering Express, 2024

Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating bio... more Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.

Research paper thumbnail of Improving computational efficiency in DSMC simulations of vacuum gas dynamics with a fixed number of particles per cell

Physica Scripta, 2024

The present study addresses the challenge of enhancing computational efficiency without compromis... more The present study addresses the challenge of enhancing computational efficiency without compromising accuracy in numerical simulations of vacuum gas dynamics using the direct simulation Monte Carlo (DSMC) method. A technique termed 'fixed particle per cell (FPPC)' was employed, which enforces a fixed number of simulator particles across all computational cells. The proposed technique eliminates the need for real-time adjustment of particle weights during simulation, reducing calculation time. Using the SPARTA solver, simulations of rarefied gas flow in a micromixer and rarefied supersonic airflow around a cylinder were conducted to validate the proposed technique. Results demonstrate that applying the FPPC technique effectively reduces computational costs while yielding results comparable to conventional DSMC implementations. Additionally, the application of local grid refinement coupled with the FPPC technique was investigated. The results show that integrating local grid refinement with the FPPC technique enables accurate prediction of flow behaviour in regions with significant gradients. These findings highlight the efficacy of the proposed technique in improving the accuracy and efficiency of numerical simulations of complex vacuum gas dynamics at a reduced computational cost.

Research paper thumbnail of The effect of the laser beam intensity profile in laser-based directed energy deposition: A high-fidelity thermal-fluid modeling approach

Additive Manufacturing, 2024

Modeling the thermal and fluid flow fields in laser-based directed energy deposition (DED-LB) is ... more Modeling the thermal and fluid flow fields in laser-based directed energy deposition (DED-LB) is crucial for understanding process behavior and ensuring part quality. However, existing models often fail to accurately predict these fields due to simplifying assumptions, particularly regarding powder particle-induced attenuation in laser power and energy density distribution, and the variable material properties and process parameters. The present work introduces a high-fidelity multi-phase thermal-fluid model driven by a combination of the discrete element method (DEM) and the finite volume method (FVM). Incorporating an enhanced attenuation model for laser energy enables a more precise approximation of powder particle-induced attenuation effects in the laser power and energy density distribution. The study focuses on the influence of laser beam intensity profiles during DED-LB of austenitic stainless steel (AISI 316 L), with model validation conducted through experimental measurements of deposited track dimensions for different beam shapes. The results of numerical simulations demonstrate the critical impact of powder-induced attenuation on the laser power and intensity profiles. Neglecting laser energy attenuation, a common assumption in numerical simulations of DED-LB, leads to overestimations of the absorbed energy of the laser beam, affecting thermal and fluid flow fields, and melt pool dimensions. The present study unravels the complex relationship between the attenuation coefficient (due to the powder stream) and powder stream characteristics, describing the variations of the attenuation coefficient with changes in the powder mass flow rate and powder stream incidence angle. The findings show the critical effects of laser beam shaping on melt pool behavior in DED-LB, with square beams inducing larger melt pool volumes and circular beams creating smaller but deeper melt pools. The proposed enhanced thermal-fluid modeling framework offers a robust approach for optimizing laser-based additive manufacturing across diverse materials and laser systems.

Research paper thumbnail of Revealing the effects of laser beam shaping on melt pool behaviour in conduction-mode laser melting

Journal of Materials Research and Technology, 2023

Laser beam shaping offers remarkable possibilities to control and optimise process stability and ... more Laser beam shaping offers remarkable possibilities to control and optimise process stability and tailor material properties and structure in laser-based welding and additive manufacturing. However, little is known about the influence of laser beam shaping on the complex melt-pool behaviour, solidified melt-track bead profile and microstructural grain morphology in laser material processing. A simulation-based approach is utilised in the present work to study the effects of laser beam intensity profile and angle of incidence on the melt-pool behaviour in conduction-mode laser melting of stainless steel 316L plates. The present high-fidelity physicsbased computational model accounts for crucial physical phenomena in laser material processing such as complex laser-matter interaction, solidification and melting, heat and fluid flow dynamics, and free-surface oscillations. Experiments were carried out using different laser beam shapes and the validity of the numerical predictions is demonstrated. The results indicate that for identical processing parameters, reshaping the laser beam leads to notable changes in the thermal and fluid flow fields in the melt pool, affecting the melt-track bead profile and solidification microstructure. The columnar-to-equiaxed transition is discussed for different laser-intensity profiles.

Research paper thumbnail of Laser butt welding of thin stainless steel 316L sheets in asymmetric configurations: A numerical study

Journal of Advanced Joining Processes, 2023

Laser butt welding of thin metal sheets is a widely used fusion-based joining technique in indust... more Laser butt welding of thin metal sheets is a widely used fusion-based joining technique in industrial manufacturing. A comprehensive understanding of the complex transport phenomena during the welding process is essential for achieving high-quality welds. In the present work, high-fidelity numerical simulations are employed to investigate the influence of various symmetric and asymmetric welding configurations on the meltpool behaviour in conduction-mode laser butt welding of stainless steel sheets. The analysis focuses on the effects of laser power density, heat source misplacement and different welding scenarios, including plates with a root gap, high-low mismatches, and dissimilar thicknesses, on the molten metal flow and heat transfer. The results show that advection is the dominant mechanism for energy transfer in the melt pool, and its contribution increases with higher laser power. The non-uniform temperature distribution over the melt-pool surface induces Marangoni shear forces, driving the flow of molten metal and leading to the formation of vortices and periodic flow oscillations within the pool. The effects of various types of asymmetries on the thermal and molten metal flow fields, as well as the process stability, are thoroughly examined and compared with symmetrical welding configurations. These comprehensive simulations provide valuable insights into the fluid flow dynamics and thermal field evolution during laser butt welding of thin metal sheets. The knowledge gained from this study can facilitate process optimisation and guide the improvement of weld quality in practical applications.

Research paper thumbnail of Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins

Renewable Energy, 2023

Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corr... more Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corrugated fins is studied. Employing a physics-based model, the influence of fin length, thickness, and wave amplitude on the thermal and fluid flow fields is explored. Incorporating fins into thermal energy storage systems enhances the heat transfer surface area and thermal penetration depth, accelerating the melting process. Corrugated fins generate more flow perturbations than straight fins, improving the melting performance. Longer and thicker fins increase the melting rate, average temperature, and thermal energy storage capacity. However, the effect of fin thickness on the thermal characteristics seems insignificant. Larger fin wave amplitudes increase the heat transfer surface area but disrupt natural convection currents, slowing the melting front progress. A surrogate model based on an artificial neural network in conjunction with the particle swarm optimisation is developed to optimise the fin geometry. The optimised geometry demonstrates a 43% enhancement in thermal energy storage per unit mass compared to the case with planar fins. The data-driven model predicts the liquid fraction with less than 1% difference from the physics-based model. The proposed approach provides a comprehensive understanding of the system behaviour and facilitates the design of thermal energy storage systems.

Research paper thumbnail of Local control of microstructure and mechanical properties of high-strength steel in electric arc-based additive manufacturing

Journal of Materials Research and Technology, 2023

Additive manufacturing offers a significant potential for producing metallic parts with distinctl... more Additive manufacturing offers a significant potential for producing metallic parts with distinctly localised microstructures and mechanical properties, commonly known as functional grading. While functional grading is generally accomplished through compositional variations or in-situ thermo-mechanical treatments, variation of process parameters during additive manufacturing can offer a promising alternative approach. Focusing on the electric arc-based additive manufacturing process, this work focuses on the functional grading of high-strength steel (S690 grade) by adjusting the travel speed and inter-pass temperature. Through a combination of thermal simulations and experimental measurements on single bead-on-plate depositions, it is shown that the microstructure and the mechanical properties of parts can be controlled through the rational adjustment of process parameters. A rectangular block was fabricated to demonstrate functional grading using a constant wire feed rate and varying travel speed. The rectangular block consisted of a low heat input (LHI) region deposited between high heat input (HHI) zones. A graded microstructure was obtained with the HHI zones composed of a mixture of polygonal ferrite, acicular ferrite, and bainite, while the LHI region was primarily composed of martensite. The hardness and profilometry-based indentation plastometry measurements indicated that the LHI region exhibited higher hardness (32%) and strength (50%), but lower uniform elongation (80%), compared to the HHI zones. The present study demonstrates the potential to achieve functional grading by adjusting process parameters in electric arc-based additive manufacturing, providing opportunities for tailor-made properties in parts.

Research paper thumbnail of Computational study of rarefied gas flow and heat transfer in lid-driven cylindrical cavities

Physics of Fluids, 2023

The gas flow characteristics in lid-driven cavities are influenced by several factors, such as th... more The gas flow characteristics in lid-driven cavities are influenced by several factors, such as the cavity geometry, gas properties, and boundary conditions. In this study, the physics of heat and gas flow in cylindrical lid-driven cavities with various cross sections, including fully or partially rounded edges, is investigated through numerical simulations using the direct simulation Monte Carlo (DSMC) and the discrete unified gas kinetic scheme (DUGKS) methods. The thermal and fluid flow fields are systematically studied for both constant and oscillatory lid velocities, for various degrees of gas rarefaction ranging from the slip to the free-molecular regimes. The impact of expansion cooling and viscous dissipation on the thermal and flow fields, as well as the occurrence of counter-gradient heat transfer (also known as anti-Fourier heat transfer) under non-equilibrium conditions, is explained based on the results obtained from numerical simulations. Furthermore, the influence of the incomplete tangential accommodation coefficient on the thermal and fluid flow fields is discussed. A comparison is made between the thermal and fluid flow fields predicted in cylindrical cavities and those in square-shaped cavities. The present work contributes to the advancement of micro-/nano-electromechanical systems by providing valuable insight into rarefied gas flow and heat transfer in lid-driven cavities.

Research paper thumbnail of Numerical Study of Gas Flow in Super Nanoporous Materials Using the Direct Simulation Monte-Carlo Method

Micromachines , 2023

The direct simulation Monte Carlo (DSMC) method, which is a probabilistic particle-based gas kine... more The direct simulation Monte Carlo (DSMC) method, which is a probabilistic particle-based gas kinetic simulation approach, is employed in the present work to describe the physics of rarefied gas flow in super nanoporous materials (also known as mesoporous). The simulations are performed for different material porosities (0.5≤ϕ≤0.9), Knudsen numbers (0.05≤Kn≤1.0), and thermal boundary conditions (constant wall temperature and constant wall heat flux) at an inlet-to-outlet pressure ratio of 2. The present computational model captures the structure of heat and fluid flow in porous materials with various pore morphologies under rarefied gas flow regime and is applied to evaluate hydraulic tortuosity, permeability, and skin friction factor of gas (argon) flow in super nanoporous materials. The skin friction factors and permeabilities obtained from the present DSMC simulations are compared with the theoretical and numerical models available in the literature. The results show that the ratio of apparent to intrinsic permeability, hydraulic tortuosity, and skin friction factor increase with decreasing the material porosity. The hydraulic tortuosity and skin friction factor decrease with increasing the Knudsen number, leading to an increase in the apparent permeability. The results also show that the skin friction factor and apparent permeability increase with increasing the wall heat flux at a specific Knudsen number.

Research paper thumbnail of The influence of laser characteristics on internal flow behaviour in laser melting of metallic substrates

Materials & Design, 2022

The absorptivity of a material is a major uncertainty in numerical simulations of laser welding a... more The absorptivity of a material is a major uncertainty in numerical simulations of laser welding and additive manufacturing, and its value is often calibrated through trial-and-error exercises. This adversely affects the capability of numerical simulations when predicting the process behaviour and can eventually hinder the exploitation of fully digitised manufacturing processes, which is a goal of “industry 4.0”. In the present work, an enhanced absorption model that takes into account the effects of laser characteristics, incident angle, surface temperature, and material composition is utilised to predict internal heat and fluid flow in laser melting of stainless steel 316L. Employing such an absorption model is physically more realistic than assuming a constant absorptivity and can reduce the costs associated with calibrating an appropriate value. High-fidelity three-dimensional numerical simulations were performed using both variable and constant absorptivity models and the predictions compared with experimental data. The results of the present work unravel the crucial effect of absorptivity on the physics of internal flow in laser material processing. The difference between melt-pool shapes obtained using fibre and CO2 laser sources is explained, and factors affecting the local energy absorption are discussed.

Research paper thumbnail of The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding

Materials, 2021

One of the challenges for development, qualification and optimisation of arc welding processes li... more One of the challenges for development, qualification and optimisation of arc welding processes lies in characterising the complex melt-pool behaviour which exhibits highly non-linear responses to variations of process parameters. The present work presents a computational model to describe the melt-pool behaviour in root-pass gas metal arc welding (GMAW). Three-dimensional numerical simulations have been performed using an enhanced physics-based computational model to unravel the effect of groove shape on complex unsteady heat and fluid flow in GMAW. The influence of surface deformations on the magnitude and distribution of the heat input and the forces applied to the molten material were taken into account. Utilising this model, the complex thermal and fluid flow fields in melt pools were visualised and described for different groove shapes. Additionally, experiments were performed to validate the numerical predictions and the robustness of the present computational model is demonstrated. The model can be used to explore the physical effects of governing fluid flow and melt-pool stability during gas metal arc root welding. View Full-Text

Research paper thumbnail of The Effects of Process Parameters on Melt-pool Oscillatory Behaviour in Gas Tungsten Arc Welding

Journal of Physics D: Applied Physics, 2021

Internal flow behaviour and melt-pool surface oscillations during arc welding are complex and not... more Internal flow behaviour and melt-pool surface oscillations during arc welding are complex and not yet fully understood. In the present work, high-fidelity numerical simulations are employed to describe the effects of welding position, sulphur concentration (60-300 ppm) and travel speed (1.25-5 mm s-1) on molten metal flow dynamics in fully-penetrated melt-pools. A wavelet transform is implemented to obtain time-resolved frequency spectra of the oscillation signals, which overcomes the shortcomings of the Fourier transform in rendering time resolution of the frequency spectra. Comparing the results of the present numerical calculations with available analytical and experimental datasets, the robustness of the proposed approach in predicting melt-pool oscillations is demonstrated. The results reveal that changes in the surface morphology of the pool resulting from a change in welding position alter the spatial distribution of arc forces and power-density applied to the molten material, and in turn affect flow patterns in the pool. Under similar welding conditions, changing the sulphur concentration affects the Marangoni flow pattern, and increasing the travel speed decreases the size of the pool and increases the offset between top and bottom melt-pool surfaces, affecting the flow structures (vortex formation) on the surface. Variations in the internal flow pattern affect the evolution of melt-pool shape and its surface oscillations.

Research paper thumbnail of Pressure-driven Nitrogen Flow in Divergent Microchannels with Isothermal Walls

Applied Sciences, 2021

Gas flow and heat transfer in confined geometries at micro and nano scales differ considerably fr... more Gas flow and heat transfer in confined geometries at micro and nano scales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. The nonequilibrium effects enhance with a decrease in the characteristic length-scale of the fluid flow or the gas density, leading to the failure of the standard Navier-Stokes-Fourier (NSF) equations in predicting thermal and fluid flow fields. The direct simulation Monte-Carlo (DSMC) method is employed in the present work to investigate pressure-driven nitrogen flow in divergent microchannels with various divergence angles and isothermal walls. The thermal fields obtained from numerical simulations are analysed for different inlet-to-outlet pressure ratios (1.5 ≤ Π ≤ 2.5), tangential momentum accommodation coefficients and Knudsen numbers (0.05 ≤ Kn ≤ 12.5), covering slip to free-molecular rarefaction regimes. The thermal field in the microchannel is predicted, heat-lines are visualised, and the physics of heat transfer in the microchannel is discussed. Due to the rarefaction effects, the direction of heat flow is largely opposite to that of the mass flow. However, the interplay between thermal and pressure gradients, which are affected by geometrical configurations of the microchannel and applied boundary conditions, determines the net heat flow direction. Additionally, the occurrence of thermal separation and cold-to-hot heat transfer (also known as anti-Fourier heat transfer) in divergent microchannels is explained.

Research paper thumbnail of Numerical Study of Molten Metal Melt Pool Behaviour during Conduction-mode Laser Spot Melting

Journal of Physics D: Applied Physics, Dec 22, 2021

Molten metal melt pools are characterised by highly non-linear responses, which are very sensitiv... more Molten metal melt pools are characterised by highly non-linear responses, which are very sensitive to imposed boundary conditions. Temporal and spatial variations in the energy flux distribution are often neglected in numerical simulations of melt pool behaviour. Additionally, thermo-physical properties of materials are commonly changed to achieve agreement between predicted melt-pool shape and experimental post-solidification macrograph. Focusing on laser spot melting in conduction mode, we investigated the influence of dynamically adjusted energy flux distribution and changing thermo-physical material properties on melt pool oscillatory behaviour using both deformable and non-deformable assumptions for the gas-metal interface. Our results demonstrate that adjusting the absorbed energy flux affects the oscillatory fluid flow behaviour in the melt pool and consequently the predicted melt-pool shape and size. We also show that changing the thermo-physical material properties artificially or using a non-deformable surface assumption lead to significant differences in melt pool oscillatory behaviour compared to the cases in which these assumptions are not made.

Research paper thumbnail of A simulation-based approach to characterise melt-pool oscillations during gas tungsten arc welding

International Journal of Heat and Mass Transfer, Oct 10, 2021

Development, optimisation and qualification of welding and additive manufacturing procedures to d... more Development, optimisation and qualification of welding and additive manufacturing procedures to date have largely been undertaken on an experimental trial and error basis, which imposes significant costs. Numerical simulations are acknowledged as a promising alternative to experiments, and can improve the understanding of the complex process behaviour. In the present work, we propose a simulation-based approach to study and characterise molten metal melt pool oscillatory behaviour during arc welding. We implement a high-fidelity three-dimensional model based on the finite-volume method that takes into account the effects of surface deformation on arc power-density and force distributions. These factors are often neglected in numerical simulations of welding and additive manufacturing. Utilising this model, we predict complex molten metal flow in melt pools and associated melt-pool surface oscillations during both steady-current and pulsed-current gas tungsten arc welding (GTAW). An analysis based on a wavelet transform was performed to extract the time-frequency content of the displacement signals obtained from numerical simulations. Our results confirm that the frequency of oscillations for a fully penetrated melt pool is lower than that of a partially penetrated melt pool with an abrupt change from partial to full penetration. We find that during transition from partial to full penetration state, two dominant frequencies coexist in the time-frequency spectrum. The results demonstrate that melt-pool oscillations profoundly depend on melt-pool shape and convection in the melt pool, which in turn is influenced by process parameters and material properties. The present numerical simulations reveal the unsteady evolution of melt pool oscillatory behaviour that are not predictable from published theoretical analyses. Additionally, using the proposed simulation-based approach, the need of triggering the melt-pool oscillations is expendable since even small surface displacements are detectable, which are not sensible to the current measurement devices employed in experiments.

Research paper thumbnail of Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids

Journal of Thermal Analysis and Calorimetry, 2020

Cooling of electronic devices is one of the critical challenges that the electronics industry is ... more Cooling of electronic devices is one of the critical challenges that the electronics industry is facing towards sustainable development. Aiming at lowering the surface temperature of the heat sink to limit thermally induced deformations, corrugated channels and nanofluids are employed to improve the thermal and hydraulic performances of a heat sink. Three-dimensional simulations based on the finite-volume approach are carried out to study conjugated heat transfer in the heat sink. Water-based nanofluids containing Al2O3 nanoparticles with two different particle sizes (29 nm and 40 nm) and volume fractions less than 4% are employed as the coolant, and their influence on the thermal and hydraulic performance of the heat sink is compared with the base fluid (i.e. water). An empirical model is utilised to approximate the effective transport properties of the nanofluids. Employing corrugated channels instead of straight channels in the heat sink results in an enhancement of 24–36% in the heat transfer performance at the cost of 20–31% increase in the required pumping power leading to an enhancement of 16–24% in the overall performance of the heat sink. Additionally, the numerical predictions indicate that the overall performance of the proposed heat sink design with corrugated channels and water–Al2O3 nanofluids is 22–40% higher than that of the water-cooled heat sink with straight channels. It is demonstrated that the overall performance of the heat sink cooled with water–Al2O3 nanofluids increases with reducing the average nanoparticle size. Additionally, the maximum temperature rise in the heat sinks is determined for different thermal loads.

Research paper thumbnail of High-viscosity liquid mixing in a slug-flow micromixer: a numerical study

Journal of Flow Chemistry, 2020

Mixing of high-viscosity liquids (e.g. glycerol–water solutions) is challenging and costly and of... more Mixing of high-viscosity liquids (e.g. glycerol–water solutions) is challenging and costly and often requires employing active mixing methods. Two-phase flow micromixers have attracted attention due to their low cost, simple structure, and high performance. In the present work, we investigate the mixing of similar fluids with viscosities equal to or higher than that of water in a two-phase (gas-liquid) slug-flow micromixer, as an economical passive design. Various cases are studied, in which the liquid samples to be mixed are either water or glycerol–water solution. The performance of the proposed slug-flow micromixer is compared with that of a single-phase micromixer with similar geometrical configuration. We demonstrate that mixing efficiencies higher than 90% are attainable for species with viscosities of about 54% higher than that of water (O(10−3) kg m−1 s−1); a result that is not attainable in the corresponding single-phase micromixer. Moreover, a mixing efficiency of more than 80% is achieved at the outlet of the micromixer for solutions with viscosities of 160% higher than that of water.

Research paper thumbnail of Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method

The high degree of uncertainty and conflicting literature data on the value of the permeability c... more The high degree of uncertainty and conflicting literature data on the value of the permeability coefficient (also known as the mushy zone constant), which aims to dampen fluid velocities in the mushy zone and suppress them in solid regions, is a critical drawback when using the fixed-grid enthalpy-porosity technique for modelling non-isothermal phase-change processes. In the present study, the sensitivity of numerical predictions to the value of this coefficient was scrutinised. Using finite-volume based numerical simulations of isothermal and non-isothermal melting and solidification problems, the causes of increased sensitivity were identified. It was found that depending on the mushy-zone thickness and the velocity field, the solid-liquid interface morphology and the rate of phase-change are sensitive to the permeability coefficient. It is demonstrated that numerical predictions of an isothermal phase-change problem are independent of the permeability coefficient for sufficiently fine meshes. It is also shown that sensitivity to the choice of permeability coefficient can be assessed by means of an appropriately defined Péclet number.

Research paper thumbnail of The influence of surface deformation on thermocapillary flow instabilities in low Prandtl melting pools with surfactants

Heat and fluid flow in low Prandtl number melting pools during laser processing of materials are ... more Heat and fluid flow in low Prandtl number melting pools during laser processing of materials are sensitive to the prescribed boundary conditions, and the responses are highly nonlinear. Previous studies have shown that fluid flow in melt pools with surfactants can be unstable at high Marangoni numbers. In numerical simulations of molten metal flow in melt pools, surface deformations and its influence on the energy absorbed by the material are often neglected. However, this simplifying assumption may reduce the level of accuracy of numerical predictions with surface deformations. In the present study, we carry out three-dimensional numerical simulations to realise the effects of surface deformations on thermocapillary flow instabilities in laser melting of a metallic alloy with surfactants. Our computational model is based on the finite-volume method and utilises the volume-of-fluid (VOF) method for gas-metal interface tracking. Additionally, we employ a dynamically adjusted heat source model and discuss its influence on numerical predictions of the melt pool behaviour. Our results demonstrate that including free surface deformations in numerical simulations enhances the predicted flow instabilities and, thus, the predicted solid-liquid interface morphologies.

Research paper thumbnail of Laminar convective heat transfer of shear-thinning liquids in rectangular channels with longitudinal vortex generators

Heat and fluid flow in a rectangular channel heat sink equipped with longitudinal vortex generato... more Heat and fluid flow in a rectangular channel heat sink equipped with longitudinal vortex generators have been numerically investigated in the range of Reynolds numbers between 25 and 200. Aqueous solutions of carboxymethyl cellulose (CMC) with different concentrations (200–2000 ppm), which are shear-thinning non-Newtonian liquids, have been utilised as working fluid. Three-dimensional simulations have been performed on a plain channel and a channel with five pairs of vortex generators. The channels have a hydraulic diameter of 8 mm and are heated by constant wall temperature. The vortex generators have been mounted at different angles of attack and locations inside the channel. The shear-thinning liquid flow in rectangular channels with longitudinal vortex generators are described and the mechanisms of heat transfer enhancement are discussed. The results demonstrate a heat transfer enhancement of 39–188% using CMC aqueous solutions in rectangular channels with LVGs with respect to a Newtonian liquid flow (i.e. water). Additionally, it is shown that equipping rectangular channels with LVGs results in an enhancement of 24–135% in heat transfer performance vis-à-vis plain channel. However, this heat transfer enhancement is associated with larger pressure losses. For the range of parameters studied in this paper, increasing the CMC concentration, the angle of attack of vortex generators and their lateral distances leads to an increase in heat transfer performance. Additionally, heat transfer performance of rectangular channels with longitudinal vortex generators enhances with increasing the Reynolds number in the laminar flow regime.

Research paper thumbnail of Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks

Biomedical Physics & Engineering Express, 2024

Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating bio... more Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.

Research paper thumbnail of Improving computational efficiency in DSMC simulations of vacuum gas dynamics with a fixed number of particles per cell

Physica Scripta, 2024

The present study addresses the challenge of enhancing computational efficiency without compromis... more The present study addresses the challenge of enhancing computational efficiency without compromising accuracy in numerical simulations of vacuum gas dynamics using the direct simulation Monte Carlo (DSMC) method. A technique termed 'fixed particle per cell (FPPC)' was employed, which enforces a fixed number of simulator particles across all computational cells. The proposed technique eliminates the need for real-time adjustment of particle weights during simulation, reducing calculation time. Using the SPARTA solver, simulations of rarefied gas flow in a micromixer and rarefied supersonic airflow around a cylinder were conducted to validate the proposed technique. Results demonstrate that applying the FPPC technique effectively reduces computational costs while yielding results comparable to conventional DSMC implementations. Additionally, the application of local grid refinement coupled with the FPPC technique was investigated. The results show that integrating local grid refinement with the FPPC technique enables accurate prediction of flow behaviour in regions with significant gradients. These findings highlight the efficacy of the proposed technique in improving the accuracy and efficiency of numerical simulations of complex vacuum gas dynamics at a reduced computational cost.

Research paper thumbnail of The effect of the laser beam intensity profile in laser-based directed energy deposition: A high-fidelity thermal-fluid modeling approach

Additive Manufacturing, 2024

Modeling the thermal and fluid flow fields in laser-based directed energy deposition (DED-LB) is ... more Modeling the thermal and fluid flow fields in laser-based directed energy deposition (DED-LB) is crucial for understanding process behavior and ensuring part quality. However, existing models often fail to accurately predict these fields due to simplifying assumptions, particularly regarding powder particle-induced attenuation in laser power and energy density distribution, and the variable material properties and process parameters. The present work introduces a high-fidelity multi-phase thermal-fluid model driven by a combination of the discrete element method (DEM) and the finite volume method (FVM). Incorporating an enhanced attenuation model for laser energy enables a more precise approximation of powder particle-induced attenuation effects in the laser power and energy density distribution. The study focuses on the influence of laser beam intensity profiles during DED-LB of austenitic stainless steel (AISI 316 L), with model validation conducted through experimental measurements of deposited track dimensions for different beam shapes. The results of numerical simulations demonstrate the critical impact of powder-induced attenuation on the laser power and intensity profiles. Neglecting laser energy attenuation, a common assumption in numerical simulations of DED-LB, leads to overestimations of the absorbed energy of the laser beam, affecting thermal and fluid flow fields, and melt pool dimensions. The present study unravels the complex relationship between the attenuation coefficient (due to the powder stream) and powder stream characteristics, describing the variations of the attenuation coefficient with changes in the powder mass flow rate and powder stream incidence angle. The findings show the critical effects of laser beam shaping on melt pool behavior in DED-LB, with square beams inducing larger melt pool volumes and circular beams creating smaller but deeper melt pools. The proposed enhanced thermal-fluid modeling framework offers a robust approach for optimizing laser-based additive manufacturing across diverse materials and laser systems.

Research paper thumbnail of Revealing the effects of laser beam shaping on melt pool behaviour in conduction-mode laser melting

Journal of Materials Research and Technology, 2023

Laser beam shaping offers remarkable possibilities to control and optimise process stability and ... more Laser beam shaping offers remarkable possibilities to control and optimise process stability and tailor material properties and structure in laser-based welding and additive manufacturing. However, little is known about the influence of laser beam shaping on the complex melt-pool behaviour, solidified melt-track bead profile and microstructural grain morphology in laser material processing. A simulation-based approach is utilised in the present work to study the effects of laser beam intensity profile and angle of incidence on the melt-pool behaviour in conduction-mode laser melting of stainless steel 316L plates. The present high-fidelity physicsbased computational model accounts for crucial physical phenomena in laser material processing such as complex laser-matter interaction, solidification and melting, heat and fluid flow dynamics, and free-surface oscillations. Experiments were carried out using different laser beam shapes and the validity of the numerical predictions is demonstrated. The results indicate that for identical processing parameters, reshaping the laser beam leads to notable changes in the thermal and fluid flow fields in the melt pool, affecting the melt-track bead profile and solidification microstructure. The columnar-to-equiaxed transition is discussed for different laser-intensity profiles.

Research paper thumbnail of Laser butt welding of thin stainless steel 316L sheets in asymmetric configurations: A numerical study

Journal of Advanced Joining Processes, 2023

Laser butt welding of thin metal sheets is a widely used fusion-based joining technique in indust... more Laser butt welding of thin metal sheets is a widely used fusion-based joining technique in industrial manufacturing. A comprehensive understanding of the complex transport phenomena during the welding process is essential for achieving high-quality welds. In the present work, high-fidelity numerical simulations are employed to investigate the influence of various symmetric and asymmetric welding configurations on the meltpool behaviour in conduction-mode laser butt welding of stainless steel sheets. The analysis focuses on the effects of laser power density, heat source misplacement and different welding scenarios, including plates with a root gap, high-low mismatches, and dissimilar thicknesses, on the molten metal flow and heat transfer. The results show that advection is the dominant mechanism for energy transfer in the melt pool, and its contribution increases with higher laser power. The non-uniform temperature distribution over the melt-pool surface induces Marangoni shear forces, driving the flow of molten metal and leading to the formation of vortices and periodic flow oscillations within the pool. The effects of various types of asymmetries on the thermal and molten metal flow fields, as well as the process stability, are thoroughly examined and compared with symmetrical welding configurations. These comprehensive simulations provide valuable insights into the fluid flow dynamics and thermal field evolution during laser butt welding of thin metal sheets. The knowledge gained from this study can facilitate process optimisation and guide the improvement of weld quality in practical applications.

Research paper thumbnail of Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins

Renewable Energy, 2023

Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corr... more Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corrugated fins is studied. Employing a physics-based model, the influence of fin length, thickness, and wave amplitude on the thermal and fluid flow fields is explored. Incorporating fins into thermal energy storage systems enhances the heat transfer surface area and thermal penetration depth, accelerating the melting process. Corrugated fins generate more flow perturbations than straight fins, improving the melting performance. Longer and thicker fins increase the melting rate, average temperature, and thermal energy storage capacity. However, the effect of fin thickness on the thermal characteristics seems insignificant. Larger fin wave amplitudes increase the heat transfer surface area but disrupt natural convection currents, slowing the melting front progress. A surrogate model based on an artificial neural network in conjunction with the particle swarm optimisation is developed to optimise the fin geometry. The optimised geometry demonstrates a 43% enhancement in thermal energy storage per unit mass compared to the case with planar fins. The data-driven model predicts the liquid fraction with less than 1% difference from the physics-based model. The proposed approach provides a comprehensive understanding of the system behaviour and facilitates the design of thermal energy storage systems.

Research paper thumbnail of Local control of microstructure and mechanical properties of high-strength steel in electric arc-based additive manufacturing

Journal of Materials Research and Technology, 2023

Additive manufacturing offers a significant potential for producing metallic parts with distinctl... more Additive manufacturing offers a significant potential for producing metallic parts with distinctly localised microstructures and mechanical properties, commonly known as functional grading. While functional grading is generally accomplished through compositional variations or in-situ thermo-mechanical treatments, variation of process parameters during additive manufacturing can offer a promising alternative approach. Focusing on the electric arc-based additive manufacturing process, this work focuses on the functional grading of high-strength steel (S690 grade) by adjusting the travel speed and inter-pass temperature. Through a combination of thermal simulations and experimental measurements on single bead-on-plate depositions, it is shown that the microstructure and the mechanical properties of parts can be controlled through the rational adjustment of process parameters. A rectangular block was fabricated to demonstrate functional grading using a constant wire feed rate and varying travel speed. The rectangular block consisted of a low heat input (LHI) region deposited between high heat input (HHI) zones. A graded microstructure was obtained with the HHI zones composed of a mixture of polygonal ferrite, acicular ferrite, and bainite, while the LHI region was primarily composed of martensite. The hardness and profilometry-based indentation plastometry measurements indicated that the LHI region exhibited higher hardness (32%) and strength (50%), but lower uniform elongation (80%), compared to the HHI zones. The present study demonstrates the potential to achieve functional grading by adjusting process parameters in electric arc-based additive manufacturing, providing opportunities for tailor-made properties in parts.

Research paper thumbnail of Computational study of rarefied gas flow and heat transfer in lid-driven cylindrical cavities

Physics of Fluids, 2023

The gas flow characteristics in lid-driven cavities are influenced by several factors, such as th... more The gas flow characteristics in lid-driven cavities are influenced by several factors, such as the cavity geometry, gas properties, and boundary conditions. In this study, the physics of heat and gas flow in cylindrical lid-driven cavities with various cross sections, including fully or partially rounded edges, is investigated through numerical simulations using the direct simulation Monte Carlo (DSMC) and the discrete unified gas kinetic scheme (DUGKS) methods. The thermal and fluid flow fields are systematically studied for both constant and oscillatory lid velocities, for various degrees of gas rarefaction ranging from the slip to the free-molecular regimes. The impact of expansion cooling and viscous dissipation on the thermal and flow fields, as well as the occurrence of counter-gradient heat transfer (also known as anti-Fourier heat transfer) under non-equilibrium conditions, is explained based on the results obtained from numerical simulations. Furthermore, the influence of the incomplete tangential accommodation coefficient on the thermal and fluid flow fields is discussed. A comparison is made between the thermal and fluid flow fields predicted in cylindrical cavities and those in square-shaped cavities. The present work contributes to the advancement of micro-/nano-electromechanical systems by providing valuable insight into rarefied gas flow and heat transfer in lid-driven cavities.

Research paper thumbnail of Numerical Study of Gas Flow in Super Nanoporous Materials Using the Direct Simulation Monte-Carlo Method

Micromachines , 2023

The direct simulation Monte Carlo (DSMC) method, which is a probabilistic particle-based gas kine... more The direct simulation Monte Carlo (DSMC) method, which is a probabilistic particle-based gas kinetic simulation approach, is employed in the present work to describe the physics of rarefied gas flow in super nanoporous materials (also known as mesoporous). The simulations are performed for different material porosities (0.5≤ϕ≤0.9), Knudsen numbers (0.05≤Kn≤1.0), and thermal boundary conditions (constant wall temperature and constant wall heat flux) at an inlet-to-outlet pressure ratio of 2. The present computational model captures the structure of heat and fluid flow in porous materials with various pore morphologies under rarefied gas flow regime and is applied to evaluate hydraulic tortuosity, permeability, and skin friction factor of gas (argon) flow in super nanoporous materials. The skin friction factors and permeabilities obtained from the present DSMC simulations are compared with the theoretical and numerical models available in the literature. The results show that the ratio of apparent to intrinsic permeability, hydraulic tortuosity, and skin friction factor increase with decreasing the material porosity. The hydraulic tortuosity and skin friction factor decrease with increasing the Knudsen number, leading to an increase in the apparent permeability. The results also show that the skin friction factor and apparent permeability increase with increasing the wall heat flux at a specific Knudsen number.

Research paper thumbnail of The influence of laser characteristics on internal flow behaviour in laser melting of metallic substrates

Materials & Design, 2022

The absorptivity of a material is a major uncertainty in numerical simulations of laser welding a... more The absorptivity of a material is a major uncertainty in numerical simulations of laser welding and additive manufacturing, and its value is often calibrated through trial-and-error exercises. This adversely affects the capability of numerical simulations when predicting the process behaviour and can eventually hinder the exploitation of fully digitised manufacturing processes, which is a goal of “industry 4.0”. In the present work, an enhanced absorption model that takes into account the effects of laser characteristics, incident angle, surface temperature, and material composition is utilised to predict internal heat and fluid flow in laser melting of stainless steel 316L. Employing such an absorption model is physically more realistic than assuming a constant absorptivity and can reduce the costs associated with calibrating an appropriate value. High-fidelity three-dimensional numerical simulations were performed using both variable and constant absorptivity models and the predictions compared with experimental data. The results of the present work unravel the crucial effect of absorptivity on the physics of internal flow in laser material processing. The difference between melt-pool shapes obtained using fibre and CO2 laser sources is explained, and factors affecting the local energy absorption are discussed.

Research paper thumbnail of The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding

Materials, 2021

One of the challenges for development, qualification and optimisation of arc welding processes li... more One of the challenges for development, qualification and optimisation of arc welding processes lies in characterising the complex melt-pool behaviour which exhibits highly non-linear responses to variations of process parameters. The present work presents a computational model to describe the melt-pool behaviour in root-pass gas metal arc welding (GMAW). Three-dimensional numerical simulations have been performed using an enhanced physics-based computational model to unravel the effect of groove shape on complex unsteady heat and fluid flow in GMAW. The influence of surface deformations on the magnitude and distribution of the heat input and the forces applied to the molten material were taken into account. Utilising this model, the complex thermal and fluid flow fields in melt pools were visualised and described for different groove shapes. Additionally, experiments were performed to validate the numerical predictions and the robustness of the present computational model is demonstrated. The model can be used to explore the physical effects of governing fluid flow and melt-pool stability during gas metal arc root welding. View Full-Text

Research paper thumbnail of The Effects of Process Parameters on Melt-pool Oscillatory Behaviour in Gas Tungsten Arc Welding

Journal of Physics D: Applied Physics, 2021

Internal flow behaviour and melt-pool surface oscillations during arc welding are complex and not... more Internal flow behaviour and melt-pool surface oscillations during arc welding are complex and not yet fully understood. In the present work, high-fidelity numerical simulations are employed to describe the effects of welding position, sulphur concentration (60-300 ppm) and travel speed (1.25-5 mm s-1) on molten metal flow dynamics in fully-penetrated melt-pools. A wavelet transform is implemented to obtain time-resolved frequency spectra of the oscillation signals, which overcomes the shortcomings of the Fourier transform in rendering time resolution of the frequency spectra. Comparing the results of the present numerical calculations with available analytical and experimental datasets, the robustness of the proposed approach in predicting melt-pool oscillations is demonstrated. The results reveal that changes in the surface morphology of the pool resulting from a change in welding position alter the spatial distribution of arc forces and power-density applied to the molten material, and in turn affect flow patterns in the pool. Under similar welding conditions, changing the sulphur concentration affects the Marangoni flow pattern, and increasing the travel speed decreases the size of the pool and increases the offset between top and bottom melt-pool surfaces, affecting the flow structures (vortex formation) on the surface. Variations in the internal flow pattern affect the evolution of melt-pool shape and its surface oscillations.

Research paper thumbnail of Pressure-driven Nitrogen Flow in Divergent Microchannels with Isothermal Walls

Applied Sciences, 2021

Gas flow and heat transfer in confined geometries at micro and nano scales differ considerably fr... more Gas flow and heat transfer in confined geometries at micro and nano scales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. The nonequilibrium effects enhance with a decrease in the characteristic length-scale of the fluid flow or the gas density, leading to the failure of the standard Navier-Stokes-Fourier (NSF) equations in predicting thermal and fluid flow fields. The direct simulation Monte-Carlo (DSMC) method is employed in the present work to investigate pressure-driven nitrogen flow in divergent microchannels with various divergence angles and isothermal walls. The thermal fields obtained from numerical simulations are analysed for different inlet-to-outlet pressure ratios (1.5 ≤ Π ≤ 2.5), tangential momentum accommodation coefficients and Knudsen numbers (0.05 ≤ Kn ≤ 12.5), covering slip to free-molecular rarefaction regimes. The thermal field in the microchannel is predicted, heat-lines are visualised, and the physics of heat transfer in the microchannel is discussed. Due to the rarefaction effects, the direction of heat flow is largely opposite to that of the mass flow. However, the interplay between thermal and pressure gradients, which are affected by geometrical configurations of the microchannel and applied boundary conditions, determines the net heat flow direction. Additionally, the occurrence of thermal separation and cold-to-hot heat transfer (also known as anti-Fourier heat transfer) in divergent microchannels is explained.

Research paper thumbnail of Numerical Study of Molten Metal Melt Pool Behaviour during Conduction-mode Laser Spot Melting

Journal of Physics D: Applied Physics, Dec 22, 2021

Molten metal melt pools are characterised by highly non-linear responses, which are very sensitiv... more Molten metal melt pools are characterised by highly non-linear responses, which are very sensitive to imposed boundary conditions. Temporal and spatial variations in the energy flux distribution are often neglected in numerical simulations of melt pool behaviour. Additionally, thermo-physical properties of materials are commonly changed to achieve agreement between predicted melt-pool shape and experimental post-solidification macrograph. Focusing on laser spot melting in conduction mode, we investigated the influence of dynamically adjusted energy flux distribution and changing thermo-physical material properties on melt pool oscillatory behaviour using both deformable and non-deformable assumptions for the gas-metal interface. Our results demonstrate that adjusting the absorbed energy flux affects the oscillatory fluid flow behaviour in the melt pool and consequently the predicted melt-pool shape and size. We also show that changing the thermo-physical material properties artificially or using a non-deformable surface assumption lead to significant differences in melt pool oscillatory behaviour compared to the cases in which these assumptions are not made.

Research paper thumbnail of A simulation-based approach to characterise melt-pool oscillations during gas tungsten arc welding

International Journal of Heat and Mass Transfer, Oct 10, 2021

Development, optimisation and qualification of welding and additive manufacturing procedures to d... more Development, optimisation and qualification of welding and additive manufacturing procedures to date have largely been undertaken on an experimental trial and error basis, which imposes significant costs. Numerical simulations are acknowledged as a promising alternative to experiments, and can improve the understanding of the complex process behaviour. In the present work, we propose a simulation-based approach to study and characterise molten metal melt pool oscillatory behaviour during arc welding. We implement a high-fidelity three-dimensional model based on the finite-volume method that takes into account the effects of surface deformation on arc power-density and force distributions. These factors are often neglected in numerical simulations of welding and additive manufacturing. Utilising this model, we predict complex molten metal flow in melt pools and associated melt-pool surface oscillations during both steady-current and pulsed-current gas tungsten arc welding (GTAW). An analysis based on a wavelet transform was performed to extract the time-frequency content of the displacement signals obtained from numerical simulations. Our results confirm that the frequency of oscillations for a fully penetrated melt pool is lower than that of a partially penetrated melt pool with an abrupt change from partial to full penetration. We find that during transition from partial to full penetration state, two dominant frequencies coexist in the time-frequency spectrum. The results demonstrate that melt-pool oscillations profoundly depend on melt-pool shape and convection in the melt pool, which in turn is influenced by process parameters and material properties. The present numerical simulations reveal the unsteady evolution of melt pool oscillatory behaviour that are not predictable from published theoretical analyses. Additionally, using the proposed simulation-based approach, the need of triggering the melt-pool oscillations is expendable since even small surface displacements are detectable, which are not sensible to the current measurement devices employed in experiments.

Research paper thumbnail of Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids

Journal of Thermal Analysis and Calorimetry, 2020

Cooling of electronic devices is one of the critical challenges that the electronics industry is ... more Cooling of electronic devices is one of the critical challenges that the electronics industry is facing towards sustainable development. Aiming at lowering the surface temperature of the heat sink to limit thermally induced deformations, corrugated channels and nanofluids are employed to improve the thermal and hydraulic performances of a heat sink. Three-dimensional simulations based on the finite-volume approach are carried out to study conjugated heat transfer in the heat sink. Water-based nanofluids containing Al2O3 nanoparticles with two different particle sizes (29 nm and 40 nm) and volume fractions less than 4% are employed as the coolant, and their influence on the thermal and hydraulic performance of the heat sink is compared with the base fluid (i.e. water). An empirical model is utilised to approximate the effective transport properties of the nanofluids. Employing corrugated channels instead of straight channels in the heat sink results in an enhancement of 24–36% in the heat transfer performance at the cost of 20–31% increase in the required pumping power leading to an enhancement of 16–24% in the overall performance of the heat sink. Additionally, the numerical predictions indicate that the overall performance of the proposed heat sink design with corrugated channels and water–Al2O3 nanofluids is 22–40% higher than that of the water-cooled heat sink with straight channels. It is demonstrated that the overall performance of the heat sink cooled with water–Al2O3 nanofluids increases with reducing the average nanoparticle size. Additionally, the maximum temperature rise in the heat sinks is determined for different thermal loads.

Research paper thumbnail of High-viscosity liquid mixing in a slug-flow micromixer: a numerical study

Journal of Flow Chemistry, 2020

Mixing of high-viscosity liquids (e.g. glycerol–water solutions) is challenging and costly and of... more Mixing of high-viscosity liquids (e.g. glycerol–water solutions) is challenging and costly and often requires employing active mixing methods. Two-phase flow micromixers have attracted attention due to their low cost, simple structure, and high performance. In the present work, we investigate the mixing of similar fluids with viscosities equal to or higher than that of water in a two-phase (gas-liquid) slug-flow micromixer, as an economical passive design. Various cases are studied, in which the liquid samples to be mixed are either water or glycerol–water solution. The performance of the proposed slug-flow micromixer is compared with that of a single-phase micromixer with similar geometrical configuration. We demonstrate that mixing efficiencies higher than 90% are attainable for species with viscosities of about 54% higher than that of water (O(10−3) kg m−1 s−1); a result that is not attainable in the corresponding single-phase micromixer. Moreover, a mixing efficiency of more than 80% is achieved at the outlet of the micromixer for solutions with viscosities of 160% higher than that of water.

Research paper thumbnail of Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method

The high degree of uncertainty and conflicting literature data on the value of the permeability c... more The high degree of uncertainty and conflicting literature data on the value of the permeability coefficient (also known as the mushy zone constant), which aims to dampen fluid velocities in the mushy zone and suppress them in solid regions, is a critical drawback when using the fixed-grid enthalpy-porosity technique for modelling non-isothermal phase-change processes. In the present study, the sensitivity of numerical predictions to the value of this coefficient was scrutinised. Using finite-volume based numerical simulations of isothermal and non-isothermal melting and solidification problems, the causes of increased sensitivity were identified. It was found that depending on the mushy-zone thickness and the velocity field, the solid-liquid interface morphology and the rate of phase-change are sensitive to the permeability coefficient. It is demonstrated that numerical predictions of an isothermal phase-change problem are independent of the permeability coefficient for sufficiently fine meshes. It is also shown that sensitivity to the choice of permeability coefficient can be assessed by means of an appropriately defined Péclet number.

Research paper thumbnail of The influence of surface deformation on thermocapillary flow instabilities in low Prandtl melting pools with surfactants

Heat and fluid flow in low Prandtl number melting pools during laser processing of materials are ... more Heat and fluid flow in low Prandtl number melting pools during laser processing of materials are sensitive to the prescribed boundary conditions, and the responses are highly nonlinear. Previous studies have shown that fluid flow in melt pools with surfactants can be unstable at high Marangoni numbers. In numerical simulations of molten metal flow in melt pools, surface deformations and its influence on the energy absorbed by the material are often neglected. However, this simplifying assumption may reduce the level of accuracy of numerical predictions with surface deformations. In the present study, we carry out three-dimensional numerical simulations to realise the effects of surface deformations on thermocapillary flow instabilities in laser melting of a metallic alloy with surfactants. Our computational model is based on the finite-volume method and utilises the volume-of-fluid (VOF) method for gas-metal interface tracking. Additionally, we employ a dynamically adjusted heat source model and discuss its influence on numerical predictions of the melt pool behaviour. Our results demonstrate that including free surface deformations in numerical simulations enhances the predicted flow instabilities and, thus, the predicted solid-liquid interface morphologies.

Research paper thumbnail of Laminar convective heat transfer of shear-thinning liquids in rectangular channels with longitudinal vortex generators

Heat and fluid flow in a rectangular channel heat sink equipped with longitudinal vortex generato... more Heat and fluid flow in a rectangular channel heat sink equipped with longitudinal vortex generators have been numerically investigated in the range of Reynolds numbers between 25 and 200. Aqueous solutions of carboxymethyl cellulose (CMC) with different concentrations (200–2000 ppm), which are shear-thinning non-Newtonian liquids, have been utilised as working fluid. Three-dimensional simulations have been performed on a plain channel and a channel with five pairs of vortex generators. The channels have a hydraulic diameter of 8 mm and are heated by constant wall temperature. The vortex generators have been mounted at different angles of attack and locations inside the channel. The shear-thinning liquid flow in rectangular channels with longitudinal vortex generators are described and the mechanisms of heat transfer enhancement are discussed. The results demonstrate a heat transfer enhancement of 39–188% using CMC aqueous solutions in rectangular channels with LVGs with respect to a Newtonian liquid flow (i.e. water). Additionally, it is shown that equipping rectangular channels with LVGs results in an enhancement of 24–135% in heat transfer performance vis-à-vis plain channel. However, this heat transfer enhancement is associated with larger pressure losses. For the range of parameters studied in this paper, increasing the CMC concentration, the angle of attack of vortex generators and their lateral distances leads to an increase in heat transfer performance. Additionally, heat transfer performance of rectangular channels with longitudinal vortex generators enhances with increasing the Reynolds number in the laminar flow regime.

Research paper thumbnail of Molten Metal Oscillatory Behaviour in Advanced Fusion-based Manufacturing Processes

The growing demand for manufactured products with complex geometries requiring advanced fusion-ba... more The growing demand for manufactured products with complex geometries requiring advanced fusion-based manufacturing techniques emphasises the importance of process development and optimisation to reduce the risk of adverse outcomes, which is currently impeded with traditional approaches (trial and error experiments). Development, optimisation and qualification of such procedures are often expensive and time-consuming, particularly when new materials or new material combinations are involved. Process stability is intrinsically linked to the stability of the molten metal melt-pool, which ideally should solidify in a smooth and continuous manner to produce a consistent product, free of undesirable geometric and metallurgical defects. The influence of material properties and process conditions on melt-pool stability are generally difficult to derive from experimental observations; hence process optimisation is often reliant on a trial-and-error approach, mitigated to a large extent by a considerable body of industrial experience. The challenge addressed in this research is to develop a simulation-based approach to assess the stability of oscillating melt-pools in fusion welding and additive manufacturing, to minimise the number of trial-and-error experiments required for process development and optimisation, which ultimately will lead to shortening the time between design and production. The computational model developed in the present work has a generic construction with specific process influences addressed through appropriate boundary conditions, avoiding the necessity to integrate melt pool and detailed process descriptions in a single simulation. The model is therefore capable of representing a wide range of welding and additive manufacturing technologies through selection of appropriate material properties and boundary conditions. The robustness of the present computational model in predicting the melt-pool behaviour is demonstrated by comparing the numerical predictions with experimental, analytical and numerical data. The simulation-based approach developed in the present work addresses some of the significant challenges involved in assessing the melt-pool stability for process development and optimisation. The numerical predictions of the present computational model enhances the current understanding of the process behaviour, which is often very challenging to achieve from experiments alone. Moreover, the present simulation-based approach can be employed to explore the design space and reduce the costs associated with process development and optimisation.