Juan Latorre | University of Arkansas (original) (raw)
Papers by Juan Latorre
Frontiers in Veterinary Science, Jun 1, 2023
Impact of Eimeria meleagrimitis and intermittent amprolium treatment on performance and the gut m... more Impact of Eimeria meleagrimitis and intermittent amprolium treatment on performance and the gut microbiome composition of Turkey poults.
Microbiology resource announcements, Jan 23, 2020
Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis... more Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis (NE) in chickens, a deadly disease worldwide. We report here the draft genome sequence of Clostridium perfringens strain TAMU, which was used in developing an NE chicken challenge model. This C. perfringens TAMU genome sequence will aid in advancing potential intervention strategies to reduce NE pathogenesis.
German Journal of Veterinary Research
The gastrointestinal tract provides the biological environment for nutrient digestion and absorpt... more The gastrointestinal tract provides the biological environment for nutrient digestion and absorption. Its physical and chemical barriers are crucial to protect from invading pathogens and toxic substances. On this basis, the intactness of the gastrointestinal tract, with its multiple functions and impacts, is one of the key prerequisites for human and animal health. Undoubtedly, the functions of a healthy gut system also largely benefit the welfare and performance of animals in farming systems such as poultry industries. Broiler chickens grow rapidly, as a result of rigorous genetic programs, due to the high absorption capacity of intestinal epithelia for nutrients, the quick transport of nutrients to the muscle, and their efficient conversion into energy and biomass. Due to oxygen metabolism or enteric commensal bacteria, intestinal epithelial cells create reactive oxygen and nitrogen species physiologically. However, increased generation of these oxidants goes along with the forma...
Food and Nutrition Sciences, 2023
Due to the removal of antibiotic growth promoters (AGPs) and consumer pressure for antibiotic-fre... more Due to the removal of antibiotic growth promoters (AGPs) and consumer pressure for antibiotic-free (ABF) or no antibiotics ever (NAE) poultry production, there is a need for sustainable alternatives to prevent disease in commercial poultry operations. Without AGPs, there has been a rise in diseases that were traditionally controlled by subtherapeutic levels of antibiotics in the diet. This has impacted the health of commercial poultry and has been a significant cost to poultry producers. To mitigate this, the industry has started to investigate alternatives to antibiotics to treat these forthcoming health issues, such as necrotic enteritis (NE). NE is an enteric disease caused by an over proliferation of toxigenic Clostridium perfringens (CP) in the gastrointestinal tract. Although CP is a commensal in the avian intestinal tract, dysbiosis caused by inflammation and impaired intestinal integrity facilitates uncontrolled replication of CP. Infectious agents, such as Eimeria maxima, appear to be a predominant predisposing factor that promotes NE. However, non-infectious stressors, including dietary changes, have also been associated with NE to some degree. As a result of increased pressure to restrict the use of antibiotics, there is a need for research evaluating the efficacy of alternatives, such as plant-derived essential oils, as potential tools to mitigate NE in commercial poultry flocks.
Translational animal science, Jun 15, 2022
The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal ... more The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal homeostasis is well established. The objective of this study was to investigate the tolerance of poultry and swine to dietary supplementation of a novel microbial-derived alkaline phosphatase (AP; E.C. 3.1.3.1 produced by Paenibacillus lentus strain CMG3709). Studies were conducted on day-old Ross 308 chicken (n = 1,000; Study 1) and weaned piglets (n = 180; Study 2) for a duration of 42 d; and consisted of four treatment groups (TG) based on the concentration of microbial-derived AP supplemented in their diet at 0; 12,000; 20,000; and 200,000 U/kg of feed. Parameters such as animal survival, hematology, coagulation, and biochemical indices were assessed at the end of the study. The effect of microbial AP on nutrient absorption through skin pigmentation and intestinal permeability were also investigated in broilers (n = 600; Study 3). In poultry (Study 1), there were no statistically significant differences between control and TG for any of the hematological and biochemical parameters, except for a marginal increase (P < 0.05) in serum phosphorus at the highest dose. This variation was not dose-dependent, was well within the reference range, and was not associated with any clinical correlates. In swine (Study 2), hematological parameters such as leukocyte, basophil, and lymphocyte counts were lower (P < 0.05) for the two highest doses but were traced back to individual variations within the group. The biochemical indices in piglets showed no significant differences between control and supplemental groups except for glucose (P = 0.0005), which showed a high effect (P = 0.008) of the random blood collection order. Nonetheless, glucose was within the normal reference range, and were not related to in-feed supplementation of AP as they had no biological significance. The survival rate in all three studies was over 98%. Dietary supplementation of microbial-derived AP up to 16.7 times the intended use (12,000 U/kg feed) level had no negative effects in both poultry and swine. In-feed supplementation of microbial-derived AP for 28 d improved intestinal pigment absorption (P < 0.0001) and reduced intestinal paracellular permeability (P = 0.0001) in broilers (Study 3). Based on these results, it can be concluded that oral supplementation of microbial-derived AP is safe for poultry and swine and effective at improving gut health in poultry.
Improving gut health in poultry, 2019
Research in Veterinary Science, 2019
Evaluation of the antimicrobial and intestinal integrity properties of boric acid in broiler chic... more Evaluation of the antimicrobial and intestinal integrity properties of boric acid in broiler chickens infected with Salmonella Enteritidis: Proof of concept
Frontiers in Veterinary Science, 2022
The three Bacillus strains present in Norum™ were initially selected by their excellent to good r... more The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, β-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their ...
BMFH, 2014
The aim of the present study was to describe the identification and characterization (physiologic... more The aim of the present study was to describe the identification and characterization (physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a commercial probiotic culture, FloraMax ®-B11. Isolates were characterized morphologically, and identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained in this study showed tolerance of LAB 18 and LAB 48 to pH 3.0, 6.5% NaCl and a high bile salt concentration (0.6%). Both strains evaluated showed in vitro antibacterial activity against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo.
Frontiers in Physiology, May 30, 2023
Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quali... more Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heatstressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were
Animals, Sep 17, 2019
Salmonella spp. continues to be one of the most important foodborne bacterial pathogens. S. enter... more Salmonella spp. continues to be one of the most important foodborne bacterial pathogens. S. enterica serotype Enteritidis (SE) that emerged as an important human illness during the 1980s is currently one of the most common non-typhoidal Salmonella serotypes worldwide. Poultry and their products (eggs and meat) are considered as one of the most important source of SE infection in humans. Due to restrictions in the addition of antibiotics in the feed of animals intended for human consumption, alternatives to these antibiotics have been sought. Probiotics have shown to reduce infection in turkey poults. However, studies are lacking to show how these probiotics influence the intestinal microbiome as well as how this microbiome is related to a lower infection by Salmonella. In the present study the effect of a Lactobacillus spp.-based probiotic on SE colonization was evaluated in two separate experiments. In both trials, a significant reduction in the incidence and log10 cfu/g of SE were observed in poults treated with the probiotic when compared with control poults (p ≤ 0.05). Results showed that the application of this probiotic culture could reduce SE cecal colonization in day-of-hatch turkey poults, although further research is needed to elucidate the mechanism of this response.
Frontiers in Veterinary Science, Jan 14, 2020
An experiment was conducted to quantify the timing and magnitude of the effects of coccidiosis va... more An experiment was conducted to quantify the timing and magnitude of the effects of coccidiosis vaccination on the growth performance, apparent ileal digestibility (AID) of nutrients and energy, intestinal morphology, and plasma carotenoids and nitric oxide in broilers. Treatment groups consisted of 3 coccidiosis control methods [unvaccinated, unmedicated (NC), in-feed chemical coccidiostat (PC), and live oocyst vaccination (VAC) at day of hatch] administered to male Cobb broilers reared in floor pens. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were determined at 12, 16, 20, 28, and 36 d. Blood and ileal digesta were collected from birds in 10 replicate pens of each treatment at 12, 16, 20, and 36 d to evaluate plasma carotenoid and nitric oxide concentrations and determine nutrient AID and IDE. Jejunal samples were taken at 12, 20, and 36 d for morphological measurements. Oocyst shedding in VAC birds was confirmed by increased oocyst counts and decreased carotenoid concentrations (P < 0.05) when compared with PC birds, with no differences (P > 0.05) in nitric oxide concentrations. At 20 d, BWG and FI were lowest (P < 0.05) in VAC birds, intermediate in NC birds, and highest in PC birds, with no differences in FCR (P > 0.05). By 28 and 36 d, FCR was higher (P < 0.05) for VAC and NC birds but BWG and FI of VAC birds were similar (P > 0.05) to PC birds. At d 12, IDE and AID of nitrogen and ether extract were lower (P < 0.05) in VAC birds than PC birds. At d 16, AID of nitrogen was similar (P > 0.05) between PC and VAC birds, whereas AID of ether extract remained lower in VAC birds than PC birds. No differences in AID of nutrients or IDE were observed (P > 0.05) between VAC and PC birds at 20 or 36 d. No differences (P > 0.05) in jejunal morphology were observed at any time point. Overall, VAC elicited a transient reduction in AID and IDE, particularly for lipids, that diminished by d 20.
Veterinary Sciences
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflam... more Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal’s microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstl...
Frontiers in Veterinary Science
Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated emb... more Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated embryonated eggs of Heterakis gallinarum, potentially present in earthworms and mechanical vectors. Once an outbreak is started, infected turkeys can transmit the disease by horizontal transmission. Factors influencing horizontal transmission of histomonosis are poorly understood. Replication of horizontal transmission in experimental conditions has not been consistent, presenting an obstacle in searching for alternatives to prevent or treat the disease. Two pilot experiments and three validation experiments were conducted in the present study. In pilot experiment 1, one isolate of Histomonas meleagridis (named Buford) was used. Turkeys were fed a low-nutrient density diet corn-soy based (LOW-CS) and raised in floor pens. In pilot experiment 2, another isolate of H. meleagridis was used (named PHL). Turkeys were fed a low-nutrient density diet with the addition of wheat middlings (LOW-WM) a...
Poultry Science, 2022
Repeated serial in vitro passage of Histomonas meleagridis, the etiological agent of histomoniasi... more Repeated serial in vitro passage of Histomonas meleagridis, the etiological agent of histomoniasis (blackhead) of turkeys, was demonstrated to markedly achieve attenuation and reduction of virulence as compared to the original wild-type isolate. Four experiments were performed to evaluate the route (oral vs. intracloacal) and age (day-of-hatch vs. d 14) for administration of attenuated H. meleagridis isolates as vaccine candidates against homologous or heterologous wild-type challenge. Attenuated H. meleagridis were developed from 2 different strains (Buford strain originating in Georgia; PHL2017 strain originating in Northwest Arkansas). Buford P80a (passage 80, assigned as isolate lineage “a” following repeated passage) was selected as the primary vaccine candidate and was evaluated in Experiments 1–3. Experiment 4 evaluated selected candidates of attenuated PHL2017 (P67, P129) and Buford (P80a, P200a, P138b, P198c) strains against Buford wild-type challenge. As has been demonstrated previously, wild-type H. meleagridis cultures administered orally after 1 day of age were not infective in the current studies, but infection with wild-type cultures could be induced orally at day-of-hatch. Infection was effectively achieved via the intracloacal route at day-of-hatch and in older turkeys (d 21, d 28–29, d 35). Intracloacal inoculation of turkeys with the attenuated passaged isolates as vaccine candidates at d 14 was shown to produce significant (P < 0.05) protection from mortality, reduction in body weight gain, as well as reduction in hepatic and cecal lesions in these experiments following challenge with either the homologous wild-type isolate or from a wild-type strain obtained years later from a geographically disparate area of the United States. Inoculation with the attenuated H. meleagridis isolates at day-of-hatch, either orally or cloacally, did not produce significant protection against subsequent wild-type challenge. While offering significant protection with minimal vaccine-related negative effects, the protection from cloacal vaccine administration was neither significantly robust nor encouraging for industry application using the methods evaluated in the present manuscript since mortalities and lesions were not completely reduced which could thereby potentially allow transmission from residual infection and shedding within a flock.
Frontiers in Genetics, 2019
The objective of this study was to evaluate the of intestinal permeability and liver bacterial tr... more The objective of this study was to evaluate the of intestinal permeability and liver bacterial translocation (BT) across a modern commercial broiler, a commercial broiler of 1995 genetics, and an unselected Jungle Fowl line. Modern 2015 (MB2015) broiler chicken, random bred line initiated from 1995 (RB1995), and the Giant Jungle fowl (JF). Chickens were randomly allocated to four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial [corn-corn (C-C)]; (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet [rye-corn (R-C)]; (3) a malnutrition rye-diet that was fed throughout the trial [rye-rye (R-R)]; and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase [corn-rye (C-R)]. Paracellular permeability was evaluated using fluorescein isothiocyanate dextran (FITC-D). Liver BT was also evaluated. MB2015 and RB1995 consuming the rye-based diet showed increase serum levels of FITC-D when compared to the corn-fed chickens (P < 0.05). Overall, MB2015 appeared to have higher enteric permeability than the JF. To our knowledge, this would be the first paper to evaluate the effect of compensatory growth on intestinal permeability and liver BT. Further studies to evaluate microbiome and inflammatory markers in these chicken models are currently being evaluated.
Animal Science Journal, 2018
The purpose of this study was to evaluate the effect of humic acids (HA) on intestinal viscosity,... more The purpose of this study was to evaluate the effect of humic acids (HA) on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction (FR) model to induce intestinal permeability in chickens. One-day-old male Cobb-Vantress broilers were randomly allocated to one of two groups (n = 25 chickens), with or without 0.2% of isolated HA from worm-compost, and placed in brooder batteries. Chicks had ad libitum access to water and feed for 14 days. Intestinal permeability was induced by 24 hr FR starting at 14 days. At 15 days of age, chickens in both groups were given an appropriate dose of fluorescein isothiocyanate dextran (FITCd) by oral gavage. Intestine and liver samples were also collected to evaluate viscosity and bacterial translocation (BT), respectively. An increase (p < .05) in intestinal viscosity was observed in the experimental group consuming 0.2% of HA and was confirmed in a published in vitro digestion model that simulates the chemical and physical conditions of the crop, proventriculus and intestine of chickens. Furthermore, the treated group also showed a significant reduction in FITC-d, liver BT and ammonia in the manure. These results suggest that HA have a positive impact in intestinal integrity in chickens. K E Y W O R D S ammonia, chicken, humic acids, intestinal permeability, intestinal viscosity 1 | INTRODUCTION Humic acids (HA) are principal components of humic substances in organic constituents of soil, compost and coal, and are also a primary organic component of streams, lakes and oceans (Lehmann & Kleber, 2015). Humic acids are produced by biodegradation of organic matter that involves physical, chemical and microbiological processes; hence, HA are a complex mixture of many different acids containing carboxyl and phenolate groups (Pandey, Pandey, & Misra, 2000). The relevance of HA is that they constitute about 80% of the carbon on the ground, and 60% of the carbon dissolved in aquatic media. Due to their solubility, they are divided into HA, fulvic acids and humin and they have been used for centuries as a soil supplement in agriculture. More recently the environmental and biomedical industries have had a growing interest in HA due to its antiviral, antioxidant, immune stimulant and anti-inflammatory properties (Aeschbacher,
Poultry Science, 2019
This study evaluated the effect of in ovo Bacillus spp. base probiotic (BBP) administration on ha... more This study evaluated the effect of in ovo Bacillus spp. base probiotic (BBP) administration on hatchability, Gram-negative bacteria (GNB) recovery, performance, and microbiota composition in 2 independent trials using a virulent E. coli seeder challenge model. In each trial, one hundred and eighty 18-day-old embryos were allocated into 1 of 2 groups: Control and treated group (inoculated with 107 BBP). On day 19 of embryogenesis, seeder embryos (n = 18) were inoculated with 4.5 × 104E. coli/mL+272 μg/mL tetracycline and segregated into mesh hatching bags. Twelve chicks per group were euthanized at hatch and at day 7 to evaluate the gastrointestinal composition of total GNB or total aerobic pasteurized bacteria. Also, in trial 2, ceca content from five chickens at day 7 were collected to evaluate microbiota composition. Embryos inoculated with BBP showed a significant (P < 0.05) reduction in the total number of GNB at day-of-hatch (DOH) and day 7. Probiotic treatment increased BW ...
Clostridium perfringens-induced necrotic enteritis (NE) has reemerged as a prevalent chicken dise... more Clostridium perfringens-induced necrotic enteritis (NE) has reemerged as a prevalent chicken disease worldwide due to reduced usage of prophylactic antibiotics. The lack of antimicrobial alternative strategies to control NE is mainly due to limited insight into the disease pathogenesis. The aim of this study is to investigate the role of microbiota metabolic product secondary bile acid deoxycholic acid (DCA) on preventing NE. C. perfringens growth was inhibited by 82.8% in 50 μM DCA Tryptic Soy Broth. Sequential Eimeria maxima and C. perfringens challenges induced acute NE showed as severe intestinal inflammation and body weight (BW) loss in broiler chickens, while 1.5 g/kg DCA diet dramatically reduced the disease. At the cellular level, DCA alleviated NE-associated ileal epithelial death and reduced lamina propria cell apoptosis. Interestingly, DCA reduced C. perfringens invasion into ileum without altering the bacterial ileal luminal colonization. Molecular analysis showed that D...
Frontiers in Veterinary Science, Jun 1, 2023
Impact of Eimeria meleagrimitis and intermittent amprolium treatment on performance and the gut m... more Impact of Eimeria meleagrimitis and intermittent amprolium treatment on performance and the gut microbiome composition of Turkey poults.
Microbiology resource announcements, Jan 23, 2020
Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis... more Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis (NE) in chickens, a deadly disease worldwide. We report here the draft genome sequence of Clostridium perfringens strain TAMU, which was used in developing an NE chicken challenge model. This C. perfringens TAMU genome sequence will aid in advancing potential intervention strategies to reduce NE pathogenesis.
German Journal of Veterinary Research
The gastrointestinal tract provides the biological environment for nutrient digestion and absorpt... more The gastrointestinal tract provides the biological environment for nutrient digestion and absorption. Its physical and chemical barriers are crucial to protect from invading pathogens and toxic substances. On this basis, the intactness of the gastrointestinal tract, with its multiple functions and impacts, is one of the key prerequisites for human and animal health. Undoubtedly, the functions of a healthy gut system also largely benefit the welfare and performance of animals in farming systems such as poultry industries. Broiler chickens grow rapidly, as a result of rigorous genetic programs, due to the high absorption capacity of intestinal epithelia for nutrients, the quick transport of nutrients to the muscle, and their efficient conversion into energy and biomass. Due to oxygen metabolism or enteric commensal bacteria, intestinal epithelial cells create reactive oxygen and nitrogen species physiologically. However, increased generation of these oxidants goes along with the forma...
Food and Nutrition Sciences, 2023
Due to the removal of antibiotic growth promoters (AGPs) and consumer pressure for antibiotic-fre... more Due to the removal of antibiotic growth promoters (AGPs) and consumer pressure for antibiotic-free (ABF) or no antibiotics ever (NAE) poultry production, there is a need for sustainable alternatives to prevent disease in commercial poultry operations. Without AGPs, there has been a rise in diseases that were traditionally controlled by subtherapeutic levels of antibiotics in the diet. This has impacted the health of commercial poultry and has been a significant cost to poultry producers. To mitigate this, the industry has started to investigate alternatives to antibiotics to treat these forthcoming health issues, such as necrotic enteritis (NE). NE is an enteric disease caused by an over proliferation of toxigenic Clostridium perfringens (CP) in the gastrointestinal tract. Although CP is a commensal in the avian intestinal tract, dysbiosis caused by inflammation and impaired intestinal integrity facilitates uncontrolled replication of CP. Infectious agents, such as Eimeria maxima, appear to be a predominant predisposing factor that promotes NE. However, non-infectious stressors, including dietary changes, have also been associated with NE to some degree. As a result of increased pressure to restrict the use of antibiotics, there is a need for research evaluating the efficacy of alternatives, such as plant-derived essential oils, as potential tools to mitigate NE in commercial poultry flocks.
Translational animal science, Jun 15, 2022
The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal ... more The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal homeostasis is well established. The objective of this study was to investigate the tolerance of poultry and swine to dietary supplementation of a novel microbial-derived alkaline phosphatase (AP; E.C. 3.1.3.1 produced by Paenibacillus lentus strain CMG3709). Studies were conducted on day-old Ross 308 chicken (n = 1,000; Study 1) and weaned piglets (n = 180; Study 2) for a duration of 42 d; and consisted of four treatment groups (TG) based on the concentration of microbial-derived AP supplemented in their diet at 0; 12,000; 20,000; and 200,000 U/kg of feed. Parameters such as animal survival, hematology, coagulation, and biochemical indices were assessed at the end of the study. The effect of microbial AP on nutrient absorption through skin pigmentation and intestinal permeability were also investigated in broilers (n = 600; Study 3). In poultry (Study 1), there were no statistically significant differences between control and TG for any of the hematological and biochemical parameters, except for a marginal increase (P < 0.05) in serum phosphorus at the highest dose. This variation was not dose-dependent, was well within the reference range, and was not associated with any clinical correlates. In swine (Study 2), hematological parameters such as leukocyte, basophil, and lymphocyte counts were lower (P < 0.05) for the two highest doses but were traced back to individual variations within the group. The biochemical indices in piglets showed no significant differences between control and supplemental groups except for glucose (P = 0.0005), which showed a high effect (P = 0.008) of the random blood collection order. Nonetheless, glucose was within the normal reference range, and were not related to in-feed supplementation of AP as they had no biological significance. The survival rate in all three studies was over 98%. Dietary supplementation of microbial-derived AP up to 16.7 times the intended use (12,000 U/kg feed) level had no negative effects in both poultry and swine. In-feed supplementation of microbial-derived AP for 28 d improved intestinal pigment absorption (P < 0.0001) and reduced intestinal paracellular permeability (P = 0.0001) in broilers (Study 3). Based on these results, it can be concluded that oral supplementation of microbial-derived AP is safe for poultry and swine and effective at improving gut health in poultry.
Improving gut health in poultry, 2019
Research in Veterinary Science, 2019
Evaluation of the antimicrobial and intestinal integrity properties of boric acid in broiler chic... more Evaluation of the antimicrobial and intestinal integrity properties of boric acid in broiler chickens infected with Salmonella Enteritidis: Proof of concept
Frontiers in Veterinary Science, 2022
The three Bacillus strains present in Norum™ were initially selected by their excellent to good r... more The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, β-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their ...
BMFH, 2014
The aim of the present study was to describe the identification and characterization (physiologic... more The aim of the present study was to describe the identification and characterization (physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a commercial probiotic culture, FloraMax ®-B11. Isolates were characterized morphologically, and identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained in this study showed tolerance of LAB 18 and LAB 48 to pH 3.0, 6.5% NaCl and a high bile salt concentration (0.6%). Both strains evaluated showed in vitro antibacterial activity against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo.
Frontiers in Physiology, May 30, 2023
Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quali... more Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heatstressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were
Animals, Sep 17, 2019
Salmonella spp. continues to be one of the most important foodborne bacterial pathogens. S. enter... more Salmonella spp. continues to be one of the most important foodborne bacterial pathogens. S. enterica serotype Enteritidis (SE) that emerged as an important human illness during the 1980s is currently one of the most common non-typhoidal Salmonella serotypes worldwide. Poultry and their products (eggs and meat) are considered as one of the most important source of SE infection in humans. Due to restrictions in the addition of antibiotics in the feed of animals intended for human consumption, alternatives to these antibiotics have been sought. Probiotics have shown to reduce infection in turkey poults. However, studies are lacking to show how these probiotics influence the intestinal microbiome as well as how this microbiome is related to a lower infection by Salmonella. In the present study the effect of a Lactobacillus spp.-based probiotic on SE colonization was evaluated in two separate experiments. In both trials, a significant reduction in the incidence and log10 cfu/g of SE were observed in poults treated with the probiotic when compared with control poults (p ≤ 0.05). Results showed that the application of this probiotic culture could reduce SE cecal colonization in day-of-hatch turkey poults, although further research is needed to elucidate the mechanism of this response.
Frontiers in Veterinary Science, Jan 14, 2020
An experiment was conducted to quantify the timing and magnitude of the effects of coccidiosis va... more An experiment was conducted to quantify the timing and magnitude of the effects of coccidiosis vaccination on the growth performance, apparent ileal digestibility (AID) of nutrients and energy, intestinal morphology, and plasma carotenoids and nitric oxide in broilers. Treatment groups consisted of 3 coccidiosis control methods [unvaccinated, unmedicated (NC), in-feed chemical coccidiostat (PC), and live oocyst vaccination (VAC) at day of hatch] administered to male Cobb broilers reared in floor pens. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were determined at 12, 16, 20, 28, and 36 d. Blood and ileal digesta were collected from birds in 10 replicate pens of each treatment at 12, 16, 20, and 36 d to evaluate plasma carotenoid and nitric oxide concentrations and determine nutrient AID and IDE. Jejunal samples were taken at 12, 20, and 36 d for morphological measurements. Oocyst shedding in VAC birds was confirmed by increased oocyst counts and decreased carotenoid concentrations (P < 0.05) when compared with PC birds, with no differences (P > 0.05) in nitric oxide concentrations. At 20 d, BWG and FI were lowest (P < 0.05) in VAC birds, intermediate in NC birds, and highest in PC birds, with no differences in FCR (P > 0.05). By 28 and 36 d, FCR was higher (P < 0.05) for VAC and NC birds but BWG and FI of VAC birds were similar (P > 0.05) to PC birds. At d 12, IDE and AID of nitrogen and ether extract were lower (P < 0.05) in VAC birds than PC birds. At d 16, AID of nitrogen was similar (P > 0.05) between PC and VAC birds, whereas AID of ether extract remained lower in VAC birds than PC birds. No differences in AID of nutrients or IDE were observed (P > 0.05) between VAC and PC birds at 20 or 36 d. No differences (P > 0.05) in jejunal morphology were observed at any time point. Overall, VAC elicited a transient reduction in AID and IDE, particularly for lipids, that diminished by d 20.
Veterinary Sciences
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflam... more Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal’s microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstl...
Frontiers in Veterinary Science
Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated emb... more Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated embryonated eggs of Heterakis gallinarum, potentially present in earthworms and mechanical vectors. Once an outbreak is started, infected turkeys can transmit the disease by horizontal transmission. Factors influencing horizontal transmission of histomonosis are poorly understood. Replication of horizontal transmission in experimental conditions has not been consistent, presenting an obstacle in searching for alternatives to prevent or treat the disease. Two pilot experiments and three validation experiments were conducted in the present study. In pilot experiment 1, one isolate of Histomonas meleagridis (named Buford) was used. Turkeys were fed a low-nutrient density diet corn-soy based (LOW-CS) and raised in floor pens. In pilot experiment 2, another isolate of H. meleagridis was used (named PHL). Turkeys were fed a low-nutrient density diet with the addition of wheat middlings (LOW-WM) a...
Poultry Science, 2022
Repeated serial in vitro passage of Histomonas meleagridis, the etiological agent of histomoniasi... more Repeated serial in vitro passage of Histomonas meleagridis, the etiological agent of histomoniasis (blackhead) of turkeys, was demonstrated to markedly achieve attenuation and reduction of virulence as compared to the original wild-type isolate. Four experiments were performed to evaluate the route (oral vs. intracloacal) and age (day-of-hatch vs. d 14) for administration of attenuated H. meleagridis isolates as vaccine candidates against homologous or heterologous wild-type challenge. Attenuated H. meleagridis were developed from 2 different strains (Buford strain originating in Georgia; PHL2017 strain originating in Northwest Arkansas). Buford P80a (passage 80, assigned as isolate lineage “a” following repeated passage) was selected as the primary vaccine candidate and was evaluated in Experiments 1–3. Experiment 4 evaluated selected candidates of attenuated PHL2017 (P67, P129) and Buford (P80a, P200a, P138b, P198c) strains against Buford wild-type challenge. As has been demonstrated previously, wild-type H. meleagridis cultures administered orally after 1 day of age were not infective in the current studies, but infection with wild-type cultures could be induced orally at day-of-hatch. Infection was effectively achieved via the intracloacal route at day-of-hatch and in older turkeys (d 21, d 28–29, d 35). Intracloacal inoculation of turkeys with the attenuated passaged isolates as vaccine candidates at d 14 was shown to produce significant (P < 0.05) protection from mortality, reduction in body weight gain, as well as reduction in hepatic and cecal lesions in these experiments following challenge with either the homologous wild-type isolate or from a wild-type strain obtained years later from a geographically disparate area of the United States. Inoculation with the attenuated H. meleagridis isolates at day-of-hatch, either orally or cloacally, did not produce significant protection against subsequent wild-type challenge. While offering significant protection with minimal vaccine-related negative effects, the protection from cloacal vaccine administration was neither significantly robust nor encouraging for industry application using the methods evaluated in the present manuscript since mortalities and lesions were not completely reduced which could thereby potentially allow transmission from residual infection and shedding within a flock.
Frontiers in Genetics, 2019
The objective of this study was to evaluate the of intestinal permeability and liver bacterial tr... more The objective of this study was to evaluate the of intestinal permeability and liver bacterial translocation (BT) across a modern commercial broiler, a commercial broiler of 1995 genetics, and an unselected Jungle Fowl line. Modern 2015 (MB2015) broiler chicken, random bred line initiated from 1995 (RB1995), and the Giant Jungle fowl (JF). Chickens were randomly allocated to four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial [corn-corn (C-C)]; (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet [rye-corn (R-C)]; (3) a malnutrition rye-diet that was fed throughout the trial [rye-rye (R-R)]; and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase [corn-rye (C-R)]. Paracellular permeability was evaluated using fluorescein isothiocyanate dextran (FITC-D). Liver BT was also evaluated. MB2015 and RB1995 consuming the rye-based diet showed increase serum levels of FITC-D when compared to the corn-fed chickens (P < 0.05). Overall, MB2015 appeared to have higher enteric permeability than the JF. To our knowledge, this would be the first paper to evaluate the effect of compensatory growth on intestinal permeability and liver BT. Further studies to evaluate microbiome and inflammatory markers in these chicken models are currently being evaluated.
Animal Science Journal, 2018
The purpose of this study was to evaluate the effect of humic acids (HA) on intestinal viscosity,... more The purpose of this study was to evaluate the effect of humic acids (HA) on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction (FR) model to induce intestinal permeability in chickens. One-day-old male Cobb-Vantress broilers were randomly allocated to one of two groups (n = 25 chickens), with or without 0.2% of isolated HA from worm-compost, and placed in brooder batteries. Chicks had ad libitum access to water and feed for 14 days. Intestinal permeability was induced by 24 hr FR starting at 14 days. At 15 days of age, chickens in both groups were given an appropriate dose of fluorescein isothiocyanate dextran (FITCd) by oral gavage. Intestine and liver samples were also collected to evaluate viscosity and bacterial translocation (BT), respectively. An increase (p < .05) in intestinal viscosity was observed in the experimental group consuming 0.2% of HA and was confirmed in a published in vitro digestion model that simulates the chemical and physical conditions of the crop, proventriculus and intestine of chickens. Furthermore, the treated group also showed a significant reduction in FITC-d, liver BT and ammonia in the manure. These results suggest that HA have a positive impact in intestinal integrity in chickens. K E Y W O R D S ammonia, chicken, humic acids, intestinal permeability, intestinal viscosity 1 | INTRODUCTION Humic acids (HA) are principal components of humic substances in organic constituents of soil, compost and coal, and are also a primary organic component of streams, lakes and oceans (Lehmann & Kleber, 2015). Humic acids are produced by biodegradation of organic matter that involves physical, chemical and microbiological processes; hence, HA are a complex mixture of many different acids containing carboxyl and phenolate groups (Pandey, Pandey, & Misra, 2000). The relevance of HA is that they constitute about 80% of the carbon on the ground, and 60% of the carbon dissolved in aquatic media. Due to their solubility, they are divided into HA, fulvic acids and humin and they have been used for centuries as a soil supplement in agriculture. More recently the environmental and biomedical industries have had a growing interest in HA due to its antiviral, antioxidant, immune stimulant and anti-inflammatory properties (Aeschbacher,
Poultry Science, 2019
This study evaluated the effect of in ovo Bacillus spp. base probiotic (BBP) administration on ha... more This study evaluated the effect of in ovo Bacillus spp. base probiotic (BBP) administration on hatchability, Gram-negative bacteria (GNB) recovery, performance, and microbiota composition in 2 independent trials using a virulent E. coli seeder challenge model. In each trial, one hundred and eighty 18-day-old embryos were allocated into 1 of 2 groups: Control and treated group (inoculated with 107 BBP). On day 19 of embryogenesis, seeder embryos (n = 18) were inoculated with 4.5 × 104E. coli/mL+272 μg/mL tetracycline and segregated into mesh hatching bags. Twelve chicks per group were euthanized at hatch and at day 7 to evaluate the gastrointestinal composition of total GNB or total aerobic pasteurized bacteria. Also, in trial 2, ceca content from five chickens at day 7 were collected to evaluate microbiota composition. Embryos inoculated with BBP showed a significant (P < 0.05) reduction in the total number of GNB at day-of-hatch (DOH) and day 7. Probiotic treatment increased BW ...
Clostridium perfringens-induced necrotic enteritis (NE) has reemerged as a prevalent chicken dise... more Clostridium perfringens-induced necrotic enteritis (NE) has reemerged as a prevalent chicken disease worldwide due to reduced usage of prophylactic antibiotics. The lack of antimicrobial alternative strategies to control NE is mainly due to limited insight into the disease pathogenesis. The aim of this study is to investigate the role of microbiota metabolic product secondary bile acid deoxycholic acid (DCA) on preventing NE. C. perfringens growth was inhibited by 82.8% in 50 μM DCA Tryptic Soy Broth. Sequential Eimeria maxima and C. perfringens challenges induced acute NE showed as severe intestinal inflammation and body weight (BW) loss in broiler chickens, while 1.5 g/kg DCA diet dramatically reduced the disease. At the cellular level, DCA alleviated NE-associated ileal epithelial death and reduced lamina propria cell apoptosis. Interestingly, DCA reduced C. perfringens invasion into ileum without altering the bacterial ileal luminal colonization. Molecular analysis showed that D...