Jonathan Murphy | University of Colorado Denver (original) (raw)
Papers by Jonathan Murphy
Cell reports, 2014
L-type voltage-gated Ca 2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC... more L-type voltage-gated Ca 2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca 2+ -dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca 2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.
Endocrinology, 2007
Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, ... more Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, hypertension, and dyslipidemia, is associated with the development of obesity in humans as well as rodent models. White adipose tissue (WAT) inflammation, caused in part by macrophage infiltration, and fat accumulation in the liver are both linked to development of the metabolic syndrome. Despite large increases in body fat, melanocortin 3-receptor (MC3-R)-deficient mice do not get fatty liver disease or severe insulin resistance. This is in contrast to obese melanocortin 4-receptor (MC4-R)-deficient mice and diet-induced obese (DIO) mice, which show increased adiposity, fatty liver disease, and insulin resistance. We hypothesized that defects in the inflammatory response to obesity may underlie the protection from metabolic syndrome seen in
Role of the Central Melanocortin Circuitry in Adaptive Thermogenesis of Brown Adipose Tissue
Endocrinology, 2006
The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although ... more The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although little is known regarding its role in the regulation of adaptive thermogenesis of brown adipose tissue (BAT). Here we show using retrograde transsynaptic tracing with attenuated pseudorabies virus coupled with dual-label immunohistochemistry that specific subsets of MC4R-expressing neurons in multiple nuclei of the central nervous system known to regulate sympathetic outflow polysynaptically connect with interscapular BAT (IBAT). Furthermore, we show that MC4R-/- and agouti-related peptide-treated mice are defective in HF diet-induced up-regulation of uncoupling protein 1 in IBAT. Additionally, MC4R-/- mice exposed to 4 C for 4 h exhibit a defect in up-regulation of uncoupling protein 1 levels in IBAT. Our results provide a neuroanatomic substrate for MC4R regulating sympathetically mediated IBAT thermogenesis and demonstrate that the MC4R is critically required for acute high-fat- and cold-induced IBAT thermogenesis.
Proceedings of the …, Jan 1, 2012
The melanocortin-3 receptor-deficient (MC3-R −/− ) mouse exhibits mild obesity without hyperphagi... more The melanocortin-3 receptor-deficient (MC3-R −/− ) mouse exhibits mild obesity without hyperphagia or hypometabolism. MC3-R deletion is reported to increase adiposity, reduce lean mass and white adipose tissue inflammation, and increase sensitivity to salt-induced hypertension. We show here that the MC3-R −/− mouse exhibits defective fasting-induced white adipose tissue lipolysis, fasting-induced liver triglyceride accumulation, fasting-induced refeeding, and fasting-induced regulation of the adipostatic and hypothalamic-adrenal-pituitary axes. Close examination of the hypothalamic-pituitary-adrenal axis showed that MC3-R −/− mice exhibit elevated nadir corticosterone as well as a blunted fasting-induced activation of the axis. The previously described phenotypes of this animal and the reduced bone density reported here parallel those of Cushing syndrome. Thus, MC3-R is required for communicating nutritional status to both central and peripheral tissues involved in nutrient partitioning, and this defect explains much of the metabolic phenotype in the model. energy homeostasis | nonesterified fatty acid | corticotrophin-releasing hormone | hormone-sensitive lipase
Nature structural & …, Jan 1, 2012
In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-typ... more In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-type Ca2+ channels, and couples Ca2+ influx to activation of calcineurin and of its substrate, the transcription factor NFAT. Here we show that an IAIIIT anchoring site in human AKAP79 binds the same surface of calcineurin as the PxIxIT recognition peptide of NFAT, albeit more strongly. A modest decrease in calcineurin-AKAP affinity due to an altered anchoring sequence is compatible with NFAT activation, whereas a further decrease impairs activation. Counterintuitively, increasing calcineurin-AKAP affinity increases recruitment of calcineurin to the scaffold but impairs NFAT activation, probably due both to slower release of active calcineurin from the scaffold and to sequestration of active calcineurin by “decoy” AKAP sites. We propose that calcineurin-AKAP79 scaffolding promotes NFAT signaling by balancing strong recruitment of calcineurin with its efficient release to communicate with NFAT.
The methylated component of the Neurospora crassa genome
Cytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals and the fungus Neurosp... more Cytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals and the fungus Neurospora crassa have about 2–3% of cytosines methylated. In mammals, methylation is almost exclusively in the under-represented CpG dinucleotides, and most CpGs are methylated whereas in Neurospora, methylation is not preferentially in CpG dinucleotides and the bulk of the genome is unmethylated. DNA methylation is essential in mammals but is dispensable in Neurospora making this simple eukaryote a favoured organism in which to study methylation. Recent studies indicate that DNA methylation in Neurospora depends on one DNA methyltransferase, DIM-2, directed by a histone H3 methyltransferase, DIM-5, but little is known about its cellular and evolutionary functions. As only four methylated sequences have been reported previously in N. crassa, we used methyl-binding-domain agarose chromatography to isolate the methylated component of the genome. DNA sequence analysis shows that the methylated component of the genome consists almost exclusively of relics of transposons that were subject to repeat-induced point mutation—a genome defence system that mutates duplicated sequences.
Obesity-Induced Inflammation in White Adipose Tissue Is Attenuated by Loss of Melanocortin-3 Receptor Signaling
Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, ... more Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, hypertension, and dyslipidemia, is associated with the development of obesity in humans as well as rodent models. White adipose tissue (WAT) inflammation, caused in part by macrophage infiltration, and fat accumulation in the liver are both linked to development of the metabolic syndrome. Despite large increases in body fat, melanocortin 3-receptor (MC3-R)-deficient mice do not get fatty liver disease or severe insulin resistance. This is in contrast to obese melanocortin 4-receptor (MC4-R)-deficient mice and diet-induced obese (DIO) mice, which show increased adiposity, fatty liver disease, and insulin resistance. We hypothesized that defects in the inflammatory response to obesity may underlie the protection from metabolic syndrome seen in MC3-R null mice. MC4-R mice fed a chow diet show increased proinflammatory gene expression and macrophage infiltration in WAT, as do wild-type (WT) DIO mice. In contrast, MC3-R-deficient mice fed a normal chow diet show neither of these inflammatory changes, despite their elevated adiposity and a comparable degree of adipocyte hypertrophy to the MC4-R null and DIO mice. Furthermore, even when challenged with high-fat chow for 4 wk, a period of time shown to induce an inflammatory response in WAT of WT animals, MC3-R nulls showed an attenuated up-regulation in both monocyte chemoattractant protein-1 (MCP-1) and TNF mRNA in WAT compared with WT high-fat-fed animals.
Role of the Central Melanocortin Circuitry in Adaptive Thermogenesis of Brown Adipose Tissue
The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although ... more The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although little is known regarding its role in the regulation of adaptive thermogenesis of brown adipose tissue (BAT). Here we show using retrograde transsynaptic tracing with attenuated pseudorabies virus coupled with dual-label immunohistochemistry that specific subsets of MC4R-expressing neurons in multiple nuclei of the central nervous system known to regulate sympathetic outflow polysynaptically connect with interscapular BAT (IBAT). Furthermore, we show that MC4R–/– and agouti-related peptide-treated mice are defective in HF diet-induced up-regulation of uncoupling protein 1 in IBAT. Additionally, MC4R–/– mice exposed to 4 C for 4 h exhibit a defect in up-regulation of uncoupling protein 1 levels in IBAT. Our results provide a neuroanatomic substrate for MC4R regulating sympathetically mediated IBAT thermogenesis and demonstrate that the MC4R is critically required for acute high-fat- and cold-induced IBAT thermogenesis.
Serotonin 5-Hydroxytryptamine2C Receptor Signaling in Hypothalamic Proopiomelanocortin Neurons: Role in Energy Homeostasis in Females
Hypothalamic proopiomelanocortin (POMC) neurons play a critical role in the regulation of energy ... more Hypothalamic proopiomelanocortin (POMC) neurons play a critical role in the regulation of energy balance, and there is a convergence of critical synaptic input including GABA and serotonin on POMC neurons to regulate their output. We found previously that 17β-estradiol (E2) reduced the potency of the GABAB receptor agonist baclofen to activate G protein-coupled inwardly rectifying potassium (GIRK) channels in hypothalamic POMC neurons through a membrane estrogen receptor (mER) via a Gαq phospholipase C (PLC)-protein kinase Cδ-protein kinase A pathway. We hypothesized that the mER and neurotransmitter receptor signaling pathways converge to control energy homeostasis. Because 5-HT2C receptors mediate many of the effects of serotonin in POMC neurons, we elucidated the common signaling pathways of E2 and 5-HT in guinea pigs using single-cell reverse transcription-polymerase chain reaction (RT-PCR), real time RT-PCR, and whole-cell patch recording. Both 5-hydroxytryptamine2C (5-HT2C) and 5-HT2A receptors were coexpressed in POMC neurons. The 5-HT2A/C agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) desensitized the GABAB response in a dose-dependent manner, which was antagonized by the selective 5-HT2C receptor antagonists 8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulphonamido) phenyl-5-oxopentyl]1,3,8-triazaspiro[4.5] decane-2,4-dione hydrochloride (RS102221) and 1,2,3, 4,10,14b-hexahydro-2-methyldibenzo [c,f]pyrazino[1,2-a]-azepine hydrochloride (ORG 3363). The 5-HT2C receptor was Gαq-coupled to PLC activation and hydrolysis of plasma membrane phosphatidylinositol bisphosphate to directly inhibit GIRK channel activity. Coapplication of the two agonists at their EC50 concentrations (DOI, 20 μM, and E2, 50 nM) produced additive effects. Although there was a significant gender difference in the effects of E2 on baclofen responses, there was no gender difference in 5-HT2C receptor-mediated effects. Finally, both DOI and estrogen (intracerebroventricular) inhibited feeding in ovariectomized female mice. Therefore, the Gαq signaling pathways of the mER and 5-HT2C receptors may converge to enhance synaptic efficacy in brain circuits that are critical for maintaining homeostatic functions
Serotonin 5-HT2C Receptor Signaling in Hypothalamic POMC Neurons: Role in Energy Homeostasis in Females
Molecular …, Jan 1, 2007
Page 1. MOL #38083 1 Serotonin 5-HT2C Receptor Signaling in Hypothalamic POMC Neurons: Role in En... more Page 1. MOL #38083 1 Serotonin 5-HT2C Receptor Signaling in Hypothalamic POMC Neurons: Role in Energy Homeostasis in Females Jian Qiu, Changhui Xue, Martha A. Bosch, Jonathan G. Murphy, Wei Fan, Oline K. Rønnekleiv and Martin J. Kelly ...
Cell reports, 2014
L-type voltage-gated Ca 2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC... more L-type voltage-gated Ca 2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca 2+ -dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca 2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.
Endocrinology, 2007
Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, ... more Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, hypertension, and dyslipidemia, is associated with the development of obesity in humans as well as rodent models. White adipose tissue (WAT) inflammation, caused in part by macrophage infiltration, and fat accumulation in the liver are both linked to development of the metabolic syndrome. Despite large increases in body fat, melanocortin 3-receptor (MC3-R)-deficient mice do not get fatty liver disease or severe insulin resistance. This is in contrast to obese melanocortin 4-receptor (MC4-R)-deficient mice and diet-induced obese (DIO) mice, which show increased adiposity, fatty liver disease, and insulin resistance. We hypothesized that defects in the inflammatory response to obesity may underlie the protection from metabolic syndrome seen in
Role of the Central Melanocortin Circuitry in Adaptive Thermogenesis of Brown Adipose Tissue
Endocrinology, 2006
The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although ... more The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although little is known regarding its role in the regulation of adaptive thermogenesis of brown adipose tissue (BAT). Here we show using retrograde transsynaptic tracing with attenuated pseudorabies virus coupled with dual-label immunohistochemistry that specific subsets of MC4R-expressing neurons in multiple nuclei of the central nervous system known to regulate sympathetic outflow polysynaptically connect with interscapular BAT (IBAT). Furthermore, we show that MC4R-/- and agouti-related peptide-treated mice are defective in HF diet-induced up-regulation of uncoupling protein 1 in IBAT. Additionally, MC4R-/- mice exposed to 4 C for 4 h exhibit a defect in up-regulation of uncoupling protein 1 levels in IBAT. Our results provide a neuroanatomic substrate for MC4R regulating sympathetically mediated IBAT thermogenesis and demonstrate that the MC4R is critically required for acute high-fat- and cold-induced IBAT thermogenesis.
Proceedings of the …, Jan 1, 2012
The melanocortin-3 receptor-deficient (MC3-R −/− ) mouse exhibits mild obesity without hyperphagi... more The melanocortin-3 receptor-deficient (MC3-R −/− ) mouse exhibits mild obesity without hyperphagia or hypometabolism. MC3-R deletion is reported to increase adiposity, reduce lean mass and white adipose tissue inflammation, and increase sensitivity to salt-induced hypertension. We show here that the MC3-R −/− mouse exhibits defective fasting-induced white adipose tissue lipolysis, fasting-induced liver triglyceride accumulation, fasting-induced refeeding, and fasting-induced regulation of the adipostatic and hypothalamic-adrenal-pituitary axes. Close examination of the hypothalamic-pituitary-adrenal axis showed that MC3-R −/− mice exhibit elevated nadir corticosterone as well as a blunted fasting-induced activation of the axis. The previously described phenotypes of this animal and the reduced bone density reported here parallel those of Cushing syndrome. Thus, MC3-R is required for communicating nutritional status to both central and peripheral tissues involved in nutrient partitioning, and this defect explains much of the metabolic phenotype in the model. energy homeostasis | nonesterified fatty acid | corticotrophin-releasing hormone | hormone-sensitive lipase
Nature structural & …, Jan 1, 2012
In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-typ... more In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-type Ca2+ channels, and couples Ca2+ influx to activation of calcineurin and of its substrate, the transcription factor NFAT. Here we show that an IAIIIT anchoring site in human AKAP79 binds the same surface of calcineurin as the PxIxIT recognition peptide of NFAT, albeit more strongly. A modest decrease in calcineurin-AKAP affinity due to an altered anchoring sequence is compatible with NFAT activation, whereas a further decrease impairs activation. Counterintuitively, increasing calcineurin-AKAP affinity increases recruitment of calcineurin to the scaffold but impairs NFAT activation, probably due both to slower release of active calcineurin from the scaffold and to sequestration of active calcineurin by “decoy” AKAP sites. We propose that calcineurin-AKAP79 scaffolding promotes NFAT signaling by balancing strong recruitment of calcineurin with its efficient release to communicate with NFAT.
The methylated component of the Neurospora crassa genome
Cytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals and the fungus Neurosp... more Cytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals and the fungus Neurospora crassa have about 2–3% of cytosines methylated. In mammals, methylation is almost exclusively in the under-represented CpG dinucleotides, and most CpGs are methylated whereas in Neurospora, methylation is not preferentially in CpG dinucleotides and the bulk of the genome is unmethylated. DNA methylation is essential in mammals but is dispensable in Neurospora making this simple eukaryote a favoured organism in which to study methylation. Recent studies indicate that DNA methylation in Neurospora depends on one DNA methyltransferase, DIM-2, directed by a histone H3 methyltransferase, DIM-5, but little is known about its cellular and evolutionary functions. As only four methylated sequences have been reported previously in N. crassa, we used methyl-binding-domain agarose chromatography to isolate the methylated component of the genome. DNA sequence analysis shows that the methylated component of the genome consists almost exclusively of relics of transposons that were subject to repeat-induced point mutation—a genome defence system that mutates duplicated sequences.
Obesity-Induced Inflammation in White Adipose Tissue Is Attenuated by Loss of Melanocortin-3 Receptor Signaling
Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, ... more Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, hypertension, and dyslipidemia, is associated with the development of obesity in humans as well as rodent models. White adipose tissue (WAT) inflammation, caused in part by macrophage infiltration, and fat accumulation in the liver are both linked to development of the metabolic syndrome. Despite large increases in body fat, melanocortin 3-receptor (MC3-R)-deficient mice do not get fatty liver disease or severe insulin resistance. This is in contrast to obese melanocortin 4-receptor (MC4-R)-deficient mice and diet-induced obese (DIO) mice, which show increased adiposity, fatty liver disease, and insulin resistance. We hypothesized that defects in the inflammatory response to obesity may underlie the protection from metabolic syndrome seen in MC3-R null mice. MC4-R mice fed a chow diet show increased proinflammatory gene expression and macrophage infiltration in WAT, as do wild-type (WT) DIO mice. In contrast, MC3-R-deficient mice fed a normal chow diet show neither of these inflammatory changes, despite their elevated adiposity and a comparable degree of adipocyte hypertrophy to the MC4-R null and DIO mice. Furthermore, even when challenged with high-fat chow for 4 wk, a period of time shown to induce an inflammatory response in WAT of WT animals, MC3-R nulls showed an attenuated up-regulation in both monocyte chemoattractant protein-1 (MCP-1) and TNF mRNA in WAT compared with WT high-fat-fed animals.
Role of the Central Melanocortin Circuitry in Adaptive Thermogenesis of Brown Adipose Tissue
The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although ... more The central melanocortin 4 receptor (MC4R) plays a critical role in energy homeostasis, although little is known regarding its role in the regulation of adaptive thermogenesis of brown adipose tissue (BAT). Here we show using retrograde transsynaptic tracing with attenuated pseudorabies virus coupled with dual-label immunohistochemistry that specific subsets of MC4R-expressing neurons in multiple nuclei of the central nervous system known to regulate sympathetic outflow polysynaptically connect with interscapular BAT (IBAT). Furthermore, we show that MC4R–/– and agouti-related peptide-treated mice are defective in HF diet-induced up-regulation of uncoupling protein 1 in IBAT. Additionally, MC4R–/– mice exposed to 4 C for 4 h exhibit a defect in up-regulation of uncoupling protein 1 levels in IBAT. Our results provide a neuroanatomic substrate for MC4R regulating sympathetically mediated IBAT thermogenesis and demonstrate that the MC4R is critically required for acute high-fat- and cold-induced IBAT thermogenesis.
Serotonin 5-Hydroxytryptamine2C Receptor Signaling in Hypothalamic Proopiomelanocortin Neurons: Role in Energy Homeostasis in Females
Hypothalamic proopiomelanocortin (POMC) neurons play a critical role in the regulation of energy ... more Hypothalamic proopiomelanocortin (POMC) neurons play a critical role in the regulation of energy balance, and there is a convergence of critical synaptic input including GABA and serotonin on POMC neurons to regulate their output. We found previously that 17β-estradiol (E2) reduced the potency of the GABAB receptor agonist baclofen to activate G protein-coupled inwardly rectifying potassium (GIRK) channels in hypothalamic POMC neurons through a membrane estrogen receptor (mER) via a Gαq phospholipase C (PLC)-protein kinase Cδ-protein kinase A pathway. We hypothesized that the mER and neurotransmitter receptor signaling pathways converge to control energy homeostasis. Because 5-HT2C receptors mediate many of the effects of serotonin in POMC neurons, we elucidated the common signaling pathways of E2 and 5-HT in guinea pigs using single-cell reverse transcription-polymerase chain reaction (RT-PCR), real time RT-PCR, and whole-cell patch recording. Both 5-hydroxytryptamine2C (5-HT2C) and 5-HT2A receptors were coexpressed in POMC neurons. The 5-HT2A/C agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) desensitized the GABAB response in a dose-dependent manner, which was antagonized by the selective 5-HT2C receptor antagonists 8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulphonamido) phenyl-5-oxopentyl]1,3,8-triazaspiro[4.5] decane-2,4-dione hydrochloride (RS102221) and 1,2,3, 4,10,14b-hexahydro-2-methyldibenzo [c,f]pyrazino[1,2-a]-azepine hydrochloride (ORG 3363). The 5-HT2C receptor was Gαq-coupled to PLC activation and hydrolysis of plasma membrane phosphatidylinositol bisphosphate to directly inhibit GIRK channel activity. Coapplication of the two agonists at their EC50 concentrations (DOI, 20 μM, and E2, 50 nM) produced additive effects. Although there was a significant gender difference in the effects of E2 on baclofen responses, there was no gender difference in 5-HT2C receptor-mediated effects. Finally, both DOI and estrogen (intracerebroventricular) inhibited feeding in ovariectomized female mice. Therefore, the Gαq signaling pathways of the mER and 5-HT2C receptors may converge to enhance synaptic efficacy in brain circuits that are critical for maintaining homeostatic functions
Serotonin 5-HT2C Receptor Signaling in Hypothalamic POMC Neurons: Role in Energy Homeostasis in Females
Molecular …, Jan 1, 2007
Page 1. MOL #38083 1 Serotonin 5-HT2C Receptor Signaling in Hypothalamic POMC Neurons: Role in En... more Page 1. MOL #38083 1 Serotonin 5-HT2C Receptor Signaling in Hypothalamic POMC Neurons: Role in Energy Homeostasis in Females Jian Qiu, Changhui Xue, Martha A. Bosch, Jonathan G. Murphy, Wei Fan, Oline K. Rønnekleiv and Martin J. Kelly ...