Martin Rittner | University College London (original) (raw)
Papers by Martin Rittner
Marine sedimentary rocks drilled on the southeastern margin of the South Orkney microcontinent in... more Marine sedimentary rocks drilled on the southeastern margin of the South Orkney microcontinent in Antarctica (Ocean Drilling Program Leg 113 Site 696) were deposited between ∼36.5 Ma to 33.6 Ma, across the Eocene–Oligocene climate transition. The recovered rocks contain abundant grains exhibiting mechanical features diagnostic of iceberg-rafted debris. Sand provenance based on a multi-proxy approach that included petrographic analysis of over 275,000 grains, detrital zircon geochronology and apatite thermochronometry rule out local sources (Antarctic Peninsula or the South Orkney Islands) for the material. Instead the ice-transported grains show a clear provenance from the southern Weddell Sea region, extending from the Ellsworth–Whitmore Mountains of West Antarctica to the coastal region of Dronning Maud Land in East Antarctica. This study provides the first evidence for a continuity of widespread glacier calving along the coastline of the southern Weddell Sea embayment at least 2.5 million yrs before the prominent oxygen isotope event at 34–33.5 Ma that is considered to mark the onset of widespread glaciation of the Antarctic continent.
We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial syst... more We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U–Pb age spectra of detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhances the power of provenance analysis, and allows us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-feldspar and mica. This quartz-poor petrographic signature , characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters.
We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial syst... more We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U–Pb age spectra of detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhances the power of provenance analysis, and allows us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-feldspar and mica. This quartz-poor petrographic signature , characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters.
Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous r... more Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal.
Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run-off and wind intensity are strongly seasonal, their respective transport strength and opposing directions maintain the Taklamakan in its position and topography.
Swiss Journal of Geosciences, 2008
Nature communications, 2015
Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- an... more Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records.
Palaeogeography, Palaeoclimatology, Palaeoecology, 2015
Gondwana Research, 2015
ABSTRACT It is well known that western Myanmar is underlain by a continental fragment, the West B... more ABSTRACT It is well known that western Myanmar is underlain by a continental fragment, the West Burma Block, but there are arguments about its origin and the time of its arrival in SE Asia. This study presents the first petrological, XRD diffraction, heavy mineral and detrital zircon U-Pb age data from turbidite sandstones in the Chin Hills that were deposited on West Burma crust in the Triassic. These sandstones contain detritus derived from areas surrounding West Burma and thus help resolve arguments about its location in the Palaeozoic and Mesozoic. West Burma, Sibumasu and Western Australia have similar populations of Archean zircons derived from Western Australian cratons. Until the Devonian all formed part of the Gondwana supercontinent. The abundance of Archean zircons decreases from Western Australia to West Burma and then to Sibumasu. This is consistent with their relative positions in the Gondwana margin, with Sibumasu furthest outboard from Western Australia. Differences in zircon populations indicate that Indochina was not close to West Burma or Sibumasu in Gondwana. West Burma contains abundant Permian and Triassic zircons. These are unknown in Western Australia and different from those of the Carnarvon Basin; they were probably derived from SE Asian tin belt granitoids. Cr spinel is present in most West Burma sandstones; it is common in SE Asia but rare in Western Australia. These new data show that West Burma was part of SE Asia before the Mesozoic and support suggestions that the Argo block that rifted in the Jurassic is not West Burma.
Computers & Geosciences, 2012
Swiss Journal of Geosciences, 2008
Marine sedimentary rocks drilled on the southeastern margin of the South Orkney microcontinent in... more Marine sedimentary rocks drilled on the southeastern margin of the South Orkney microcontinent in Antarctica (Ocean Drilling Program Leg 113 Site 696) were deposited between ∼36.5 Ma to 33.6 Ma, across the Eocene–Oligocene climate transition. The recovered rocks contain abundant grains exhibiting mechanical features diagnostic of iceberg-rafted debris. Sand provenance based on a multi-proxy approach that included petrographic analysis of over 275,000 grains, detrital zircon geochronology and apatite thermochronometry rule out local sources (Antarctic Peninsula or the South Orkney Islands) for the material. Instead the ice-transported grains show a clear provenance from the southern Weddell Sea region, extending from the Ellsworth–Whitmore Mountains of West Antarctica to the coastal region of Dronning Maud Land in East Antarctica. This study provides the first evidence for a continuity of widespread glacier calving along the coastline of the southern Weddell Sea embayment at least 2.5 million yrs before the prominent oxygen isotope event at 34–33.5 Ma that is considered to mark the onset of widespread glaciation of the Antarctic continent.
We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial syst... more We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U–Pb age spectra of detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhances the power of provenance analysis, and allows us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-feldspar and mica. This quartz-poor petrographic signature , characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters.
We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial syst... more We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U–Pb age spectra of detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhances the power of provenance analysis, and allows us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-feldspar and mica. This quartz-poor petrographic signature , characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters.
Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous r... more Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal.
Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run-off and wind intensity are strongly seasonal, their respective transport strength and opposing directions maintain the Taklamakan in its position and topography.
Swiss Journal of Geosciences, 2008
Nature communications, 2015
Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- an... more Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records.
Palaeogeography, Palaeoclimatology, Palaeoecology, 2015
Gondwana Research, 2015
ABSTRACT It is well known that western Myanmar is underlain by a continental fragment, the West B... more ABSTRACT It is well known that western Myanmar is underlain by a continental fragment, the West Burma Block, but there are arguments about its origin and the time of its arrival in SE Asia. This study presents the first petrological, XRD diffraction, heavy mineral and detrital zircon U-Pb age data from turbidite sandstones in the Chin Hills that were deposited on West Burma crust in the Triassic. These sandstones contain detritus derived from areas surrounding West Burma and thus help resolve arguments about its location in the Palaeozoic and Mesozoic. West Burma, Sibumasu and Western Australia have similar populations of Archean zircons derived from Western Australian cratons. Until the Devonian all formed part of the Gondwana supercontinent. The abundance of Archean zircons decreases from Western Australia to West Burma and then to Sibumasu. This is consistent with their relative positions in the Gondwana margin, with Sibumasu furthest outboard from Western Australia. Differences in zircon populations indicate that Indochina was not close to West Burma or Sibumasu in Gondwana. West Burma contains abundant Permian and Triassic zircons. These are unknown in Western Australia and different from those of the Carnarvon Basin; they were probably derived from SE Asian tin belt granitoids. Cr spinel is present in most West Burma sandstones; it is common in SE Asia but rare in Western Australia. These new data show that West Burma was part of SE Asia before the Mesozoic and support suggestions that the Argo block that rifted in the Jurassic is not West Burma.
Computers & Geosciences, 2012
Swiss Journal of Geosciences, 2008