Eric Schmelz | University of California, San Diego (original) (raw)

Papers by Eric Schmelz

Research paper thumbnail of Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings

Journal of Chemical Ecology, 2006

Plants respond to insect attack with the induction of volatiles that function as indirect plant d... more Plants respond to insect attack with the induction of volatiles that function as indirect plant defenses through the attraction of natural enemies to the herbivores. Despite the fact that volatiles are induced in response to caterpillar attack, their reciprocal effects on the host location behaviors of the same foraging herbivores are poorly understood. We examined orientation responses of sixth instar fall armyworm [FAW; Spodoptera frugiperda (Smith)] to odors from herbivore-damaged and undamaged maize seedlings (Zea mays var. Golden Queen) in y-tube olfactometer bioassays. While both damaged and undamaged maize seedlings were attractive compared with air, sixth instars preferred odors from damaged maize seedlings over odors from undamaged maize seedlings. Gas chromatography–mass spectrometry analysis of plant volatiles revealed that linalool and 4,8-dimethyl-1,3,7-nonatriene were the major volatiles induced by FAW herbivory 6 hr after initial damage. Given its prominence in induced plants and established attractiveness to adult FAW, linalool was evaluated both as an individual attractant and as a supplemental component of whole plant odors. Volatile linalool was more attractive than air to sixth instar FAW over a broad range of release rates. FAW also responded selectively to different amounts of linalool, preferring the higher amount. The orientation preferences of FAW were readily manipulated through capillary release of linalool into the airstream of whole plant odors. FAW preferred linalool over undamaged plant odors, and linalool-supplemented plant odors over unsupplemented plant odors, indicating that olfactory preferences could be changed by alteration of a single volatile component. These results suggest that although many induced volatiles attract natural enemies of herbivores, these defenses may also inadvertently recruit more larval herbivores to an attacked plant or neighboring conspecifics.

Research paper thumbnail of The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays

Planta, 2001

Induced plant responses to insect attack include the release of volatile chemicals. These volatil... more Induced plant responses to insect attack include the release of volatile chemicals. These volatiles are used as host-location signals by foraging parasitoids, which are natural enemies of insect herbivores. A plant's response to herbivory can be influenced by factors present in insect oral secretions. Volicitin (N-(17-hydroxylinolenoyl)-L-glutamine), identified in beet armyworm (Spodoptera exigua) oral secretions, stimulates volatile release in corn (Zea mays L.) seedlings in a manner similar to beet armyworm herbivory. Volicitin is hypothesized to trigger release of induced volatiles, at least in part, by modulating levels of the wound hormone, jasmonic acid (JA). We compare the sesquiterpene volatile release of damaged leaves treated with aqueous buffer only or with the same buffer containing volicitin or JA. Leaves were damaged by scratching with a razor and test solutions were applied to the scratched area. The leaves were either excised from the plant or left intact shortly after this treatment. Plants were treated at three different times (designated as Evening, Midnight, and Morning) and volatiles were collected in the subsequent photoperiod. JA and volicitin treatments stimulated the release of volatile sesquiterpenes, namely β-caryophyllene, (E)-α-bergamotene, and (E)-β-farnesene. In all cases, JA stimulated significant sesquiterpene release above mechanical damage alone. Volicitin induced an increase in sesquiterpene volatiles for all excised-leaf bioassays and the Midnight intact plants. Volicitin treatments in the Evening and Morning intact plants produced more sesquiterpenes than the untreated controls, while mechanical damage alone produced an intermediate response that did not differ from either treatment group. Excised leaves produced a 2.5- to 8.0-fold greater volatile response than similarly treated intact plants. Excision also altered the ratio of JA-and volicitin-induced sesquiterpene release by preferentially increasing (E)-β-farnesene levels relative to β-caryophyllene. The inducibility of volatile release varied with time of treatment. On average, sesquiterpene release was highest in the Midnight excised leaves and lowest in the Morning intact plants. The duration of induced volatile release also differed between treatments. On average, JA produced a sustained release of sesquiterpenes over time, with over 20% of the combined sesquiterpenes released in the third and final volatile collection period. In contrast, less than 8% of the combined sesquiterpenes induced by volicitin were emitted during this period. The large quantitative differences between intact plants and detached leaves suggest that the results of assays using excised tissues should be cautiously interpreted when considering intact-plant models.

Research paper thumbnail of Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris

Journal of Chemical Ecology, 1996

We examined the effects of inhibitors of the octadecanoid pathway (n-propyl gallate, acetosalicyl... more We examined the effects of inhibitors of the octadecanoid pathway (n-propyl gallate, acetosalicylic acid, salicylhydroxamic acid, methyl salicylate, and antipyrine) on wound- and jasmonate-induced nicotine accumulation and compared the nicotine-inducing ability of exogeneous additions of linolenic acid (18:3) and its methyl ester, linoleic acid (18:2), abscisic acid, traumatic acid, and methyl dihydrojasmonate to the nicotine-inducing ability of exogenous additions of methyl jasmonate (MJ). The first four of these inhibitors significantly reduced wound-induced nicotine accumulation when applied in a lanolin paste to wounded tissues immediately after wounding at concentrations of 89–90µg/plant. When methyl salicylate and propyl gallate were mixed individually with MJ, neither inhibited MJ-induced nicotine synthesis, which suggests that the inhibitors block jasmonate synthesis or release from stored pools and not its effects. Linolenic acid or its methyl ester applied to undamaged plants or damaged plants (to either damaged or undamaged leaves) or to the roots of hydroponically growing plants did not induce nicotine accumulation or increase nicotine accumulation above levels found in damaged plants. Similarly, traumatic acid, linoleic acid, and abscisic acid did not induce nicotine accumulations. Methyl dihydrojasmonate, which is biosynthetically derived from linoleic acid, had 12–56% of the nicotine-inducing acitivity of MJ when added to the roots of hydroponically grown plants. The signal transduction pathway mediating wound-induced nicotine production therefore shares many features of the pathway eliciting wound-induced proteinase inhibitor production but differs in not being regulated at the lipase step in jasmonic acid production and not being responsive to abscisic acid.

Research paper thumbnail of Insect-Induced Synthesis of Phytoecdysteroids in Spinach, Spinacia oleracea

Journal of Chemical Ecology, 1999

Spinach (Spinacia oleracea) foliage is known to synthesize and accumulate insect molting hormones... more Spinach (Spinacia oleracea) foliage is known to synthesize and accumulate insect molting hormones, predominantly in the form of 20-hydroxyecdysone (20E). We previously demonstrated that root 20E accumulation is increased following root damage. We designed two further experiments to address root responses to both mechanical and insect damage. In plants grown hydroponically, removal of 35% or less of the root mass did not result in changes in root 20E levels. However, removal of 70% of the root mass stimulated 6.0- and 1.5-fold increases in the root and shoot 20E concentrations, respectively. The effects of insect damage on soil-grown plants were investigated by infesting plant roots with black vine weevil (BVW: Otiorhynchus sulcatus) larvae and allowing them to feed for seven days. Decreases in root mass occurred in young plants; however, no changes were detected in mature plants. In all cases, root herbivory resulted in at least a 3.0-fold increase in root 20E concentrations. Our previous experiments implicated jasmonic acid and the analog methyl jasmonate (MJ) in signaling the damage-induced accumulation of root 20E levels. We investigated the activity of other phytohormones and growth regulators (GRs) on the 20E accumulation patterns of young plants as a means of examining the significance of jasmonates in the induction response. Hydroponic additions of MJ (0.5 μM) and the synthetic auxin, 1-naphthaleneacetic acid (NAA; 0.5 μM), resulted in significant increases in root 20E levels. At the concentrations tested, indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA), and trans-zeatin (Z) had no effects on root 20E concentrations. However, both NAA (0.5–5.0 μM) and Z (5.0 μM) treatments caused increases in the root/shoot dry mass ratios, indicating shifts in resource allocation to the roots. Treatments involving ABA (5.0 μM) and Z (0.5–5.0 μM) caused significant increases in shoot 20E concentrations. No other hormone treatments altered shoot accumulation patterns. The mechanisms underlying the root 20E induction phenomena were investigated through the incorporation of [2-14C]mevalonic acid ([14C]MVA). Within one day, excised roots readily incorporated radioactivity into 20E from [14C]MVA. In intact plants, [14C]MVA absorbed by the roots was rapidly incorporated into root 20E pools following damage and MJ treatments. This implies that the wound-induced root 20E accumulation is the result of increased de novo 20E synthesis in the root.

Research paper thumbnail of Identification of loci affecting flavour volatile emissions in tomato fruits

Journal of Experimental Botany, 2006

Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of appr... more Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of approximately 30 volatile compounds synthesized from a diverse set of precursors, including amino acids, lipids, and carotenoids. Some of these volatiles impart desirable qualities while others are negatively perceived. As a first step to identify the genes responsible for the synthesis of flavour-related chemicals, an attempt was made to identify loci that influence the chemical composition of ripe fruits. A genetically diverse but well-defined Solanum pennellii IL population was used. Because S. pennellii is a small green-fruited species, this population exhibits great biochemical diversity and is a rich source of genes affecting both fruit development and chemical composition. This population was used to identify multiple loci affecting the composition of chemicals related to flavour. Twenty-five loci were identified that are significantly altered in one or more of 23 different volatiles and four were altered in citric acid content. It was further shown that emissions of carotenoid-derived volatiles were directly correlated with the fruit carotenoid content. Linked molecular markers should be useful for breeding programmes aimed at improving fruit flavour. In the longer term, the genes responsible for controlling the levels of these chemicals will be important tools for understanding the complex interactions that ultimately integrate to provide the unique flavour of a tomato.

Research paper thumbnail of Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris

Planta, 1997

Jasmonic acid (JA) is thought to be part of a signal-transduction pathway which dramatically incr... more Jasmonic acid (JA) is thought to be part of a signal-transduction pathway which dramatically increases de-novo nicotine synthesis in the roots and increases whole-plant (WP) nicotine pools in response to the wounding of the leaves in Nicotiana sylvestrisSpegazzini and Comes (Solanaceae). We report the synthesis of a doubly labeled JA ([1, 2-13C]JA) and use it as an internal standard to quantify by gas chromatography-mass spectrometry the changes in root and shoot JA pools in plants subjected to differing amounts of standardized leaf wounding. Wounding increased JA pools 10-fold locally in damaged leaves within 90 min and systemically in the roots (3.5-fold) 180 min after wounding. If JA functions as an intermediary between stimulus and response, quantitative relationships among the stimulus, JA, and the response should exist. To examine these relationships, we varied the number of punctures in four leaves and quantified both the resulting JA in damaged leaves after 90 min and the resulting WP nicotine concentration after 5 d. We found statistically significant, positive relationships among number of leaf punctures, endogenous JA, and WP nicotine accumulation. We used two inhibitors of wound-induced nicotine production, methyl salicylate and indole-3-acetic acid, to manipulate the relationships between wound-induced changes in JA and WP nicotine accumulation. Since wounding and the response to wounding occur in widely separated tissues, we applied inhibitors to different plant parts to examine their effects on the local and systemic components of this response. In all experiments, inhibition of the wound-induced increase in leaf JA 90 min after wounding was associated with the inhibition of the nicotine response 5 d after wounding. We conclude that wound-induced increases in leaf JA are an important component of this long-distance signal-transduction pathway.

Research paper thumbnail of Phytohormone-based activity mapping of insect herbivore-produced elicitors

Proceedings of The National Academy of Sciences, 2009

In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the i... more In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the induced production of direct and indirect defenses. Elicitors present in herbivore oral secretions are believed to positively regulate many inducible plant defenses; however, little is known about the specificity of elicitor recognition in plants. To investigate the phylogenic distribution of elicitor activity, we tested representatives from three different elicitor classes on the time course of defense-related phytohormone production, including ethylene (E), jasmonic acid (JA), and salicylic acid, in a range of plant species spanning angiosperm diversity. All families examined responded to at least one elicitor class with significant increases in E and JA production within 1 to 2 h after treatment, yet elicitation activity among species was highly idiosyncratic. The fatty-acid amino acid conjugate volicitin exhibited the widest range of phytohormone and volatile inducing activity, which spanned maize (Zea mays), soybean (Glycine max), and eggplant (Solanum melongena). In contrast, the activity of inceptinrelated peptides, originally described in cowpea (Vigna unguiculata), was limited even within the Fabaceae. Similarly, caeliferin A16:0, a disulfooxy fatty acid from grasshoppers, was the only elicitor with demonstrable activity in Arabidopsis thaliana. Although precise mechanisms remain unknown, the unpredictable nature of elicitor activity between plant species supports the existence of specific receptor-ligand interactions mediating recognition. Despite the lack of an ideal plant model for studying the action of numerous elicitors, E and JA exist as highly conserved and readily quantifiable markers for future discoveries in this field. ethylene ͉ insect elicitor ͉ jasmonic acid ͉ plant defense ͉ volatile organic compound This article contains supporting information online at www.pnas.org/cgi/content/full/ 0811861106/DCSupplemental.

Research paper thumbnail of An herbivore elicitor activates the gene for indole emission in maize

Proceedings of The National Academy of Sciences, 2000

Maize and a variety of other plant species release volatile compounds in response to herbivore at... more Maize and a variety of other plant species release volatile compounds in response to herbivore attack that serve as chemical cues to signal natural enemies of the feeding herbivore. N-(17-hydroxylinolenoyl)-L-glutamine is an elicitor component that has been isolated and chemically characterized from the regurgitant of the herbivore-pest beet armyworm. This fatty acid derivative, referred to as volicitin, triggers the synthesis and release of volatile components, including terpenoids and indole in maize. Here we report on a previously unidentified enzyme, indole-3-glycerol phosphate lyase (IGL), that catalyzes the formation of free indole and is selectively activated by volicitin. IGL's enzymatic properties are similar to BX1, a maize enzyme that serves as the entry point to the secondary defense metabolites DIBOA and DIMBOA. Genesequence analysis indicates that Igl and Bx1 are evolutionarily related to the tryptophan synthase alpha subunit. † To whom reprint requests should be addressed at:

Research paper thumbnail of Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas

Plant Physiology, 2005

fax 352-392-3870.

Research paper thumbnail of Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes

Journal of Chemical Ecology, 1994

Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a dam... more Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a damage signal that dramatically increasesde novo nicotine synthesis in the roots. The increased synthesis leads to increases in whole-plant nicotine pools, which in turn make plants more resistant to further herbivore attack. Because signal production and the response to the signal occur in widely separated tissues, the speed with which different damage signals exit a damaged leaf can be studied. We propose that electrical damage signals should exit a leaf faster (less than 60 min) than chemical damage signals. Excision of a leaf induces a smaller increase in nicotine production than does puncture damage, so we examined our proposition by excising previously punctured leaves at 1, 60, and 960 min after leaf puncture and quantifying the induced whole-plant nicotine pools six days later when the induced nicotine production had reached a maximum. Significant induced nicotine production occurred only if punctured leaves were excised more than 1 hr after puncture, which is consistent with the characteristics of a slow-moving chemical signal rather than a fast-moving electrical signal. We explore the nature of the chemical signal and demonstrate that additions of 90µg or more of methyl jasmonate (MJ) in an aqueous solution to the roots of hydroponically grown plants inducede novo nicotine synthesis from15NO3 in a manner similar to that induced by leaf damage. We examine the hypothesis that jasmonic acid (JA) functions in the transfer of the damage signal from shoot to root. Using GC-MS techniques to quantify whole-plant JA pools, we demonstrate that leaf damage rapidly (µg) of MJ in a lanolin paste to leaves from hydroponically grown plants significantly increased endogenous root JA pools and increasedde novo nicotine synthesis in these plants. However, the addition of 93µg or less of MJ did not significantly increase endogenous root JA pools and did not significantly affectde novo nicotine synthesis. We propose that wounding increases shoot JA pools, which either directly through transport or indirectly through a systemin-like signal increase root JA pools, which, in turn, stimulate root nicotine synthesis and increase whole-plant nicotine pools.

Research paper thumbnail of Damage-Induced Accumulation of Phytoecdysteroids in Spinach: A Rapid Root Response Involving the Octadecanoic Acid Pathway

Journal of Chemical Ecology, 1998

Some plant defenses are known to be rapidly induced following attack by phytophagous insects. Pla... more Some plant defenses are known to be rapidly induced following attack by phytophagous insects. Plant-produced insect molting hormones, termed phytoecdysteroids, are believed to aid plant resistance; however, their dynamics are poorly understood. Using spinach (Spinacia oleracea) as a model system, we examined the inducibility of phytoecdysteroids, primarily 20-hydroxyecdysone (20E), in an effort to characterize potential interactions with herbivorous insects. Rapid phytochemical induction was investigated using damage treatments and applications of defense-related plant-signal analogs, specifically methyl jasmonate (MJ) and methyl salicylate (MSA). Within two days, mechanically damaged roots exhibited two to three fold increases in phytoecdysteroid concentrations. Four days after root damage, small increases in shoot levels were also detectable. Unlike roots, foliar 20E concentrations were unaltered over a range of shoot treatments including insect herbivory (Spodoptera exigua), mechanical damage, and MJ applications. Additions of MJ (12.5–50 μg/liter) to the root systems of hydroponically grown plants stimulated accumulations of root phytoecdysteroids in a dose-dependent manner, similar in magnitude to the response induced by root damage. Under identical conditions, MSA did not affect the accumulation of 20E when added to the hydroponic solutions of undamaged plants. Moreover, MSA inhibited the induction of 20E in wounded roots, but did not interfere with the action of applied MJ. In contrast to mechanical damage, roots did not induce 20E levels when challenged with two different fungal pathogens (Pythium aphanidermatum and Phytophthora capsici).We propose that wound-induced accumulations of 20E are generated in the roots, signaled via endogenous jasmonates, and may confer enhanced resistance against subterranean herbivorous insects.

Research paper thumbnail of Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays

Physiologia Plantarum, 2003

Plants display differential responses following mechanical damage and insect herbivory. Both cate... more Plants display differential responses following mechanical damage and insect herbivory. Both caterpillar attack and the application of caterpillar oral secretions (OS) to wounded leaves stimulates volatile emission above mechanical damage alone. Volicitin (N-17-hydroxylinolenoyl-L-glutamine), present in beet armyworm (BAW, Spodoptera exigua) OS, is a powerful elicitor of volatiles in excised maize seedlings (Zea mays cv. Delprim). We consider some of the mechanistic differences between wounding and insect herbivory in maize by examining the activity of volicitin, changes in jasmonic acid (JA) levels, and volatile emission from both intact plant and excised leaf bioassays. Compared to mechanical damage alone, volicitin stimulated increases in both JA levels and sesquiterpene volatiles when applied to intact plants. In a bioassay comparison, excised leaves were more sensitive and produced far greater volatile responses than intact plants following applications of both volicitin and JA. In the excised leaf bioassay, volicitin applications (10±500 pmol) to wounded leaves resulted in dose dependent JA increases and a direct positive relationship between JA and sesquiterpene volatile emission. Interestingly, volicitin-induced JA levels did not differ between intact and excised bioassays, suggesting a possible interaction of JA with other regulatory signals in excised plants. In addition to JA, insect herbivory is known to stimulate the production of ethylene. Significant increases in ethylene were induced only by BAW herbivory and not by either wounding or volicitin treatments. Using intact plant bioassays, ethylene (at 1 ml l À1 or less) greatly promoted volatile emission induced by volicitin and JA but not mechanical damage alone. For intact plants, wounding, elicitor-induced JA and insect-induced ethylene appear to be important interacting components in the stimulation of insect-induced volatile emission.

Research paper thumbnail of Cotton Plant, Gossypium hirsutum L., Defense in Response to Nitrogen Fertilization

Journal of Chemical Ecology, 2008

Plants respond to insect herbivory by producing dynamic changes in an array of defense-related vo... more Plants respond to insect herbivory by producing dynamic changes in an array of defense-related volatile and nonvolatile secondary metabolites. A scaled response relative to herbivory levels and nutrient availability would be adaptive, particularly under nutrient-limited conditions, in minimizing the costs of expressed defensive pathways and synthesis. In this study, we investigated effects of varying nitrogen (N) fertilization (42, 112, 196, and 280 ppm N) on levels of cotton plant (Gossypium hirsutum) phytohormones [jasmonic acid (JA) and salicylic acid (SA)], terpenoid aldehydes (hemigossypolone, heliocides H1, H2, H3, and H4), and volatile production in response to beet armyworm (Spodoptera exigua) herbivory. Additional bioassays assessed parasitoid (Cotesia marginiventris) host-searching success in response to cotton plants grown under various N fertilizer regimes. At low N input (42 ppm N), herbivore damage resulted in significant increases in local leaf tissue concentrations of JA and volatiles and in systemic accumulation of terpenoid aldehydes. However, increased N fertilization of cotton plants suppressed S. exigua-induced plant hormones and led to reduced production of various terpenoid aldehydes in damaged mature leaves and undamaged young leaves. While increased N fertilization significantly diminished herbivore-induced leaf volatile concentrations, the parasitism of S. exigua larvae by the parasitoid C. marginiventris in field cages did not differ among N treatments. This suggests that, despite significant N fertilization effects on herbivore-induced plant defenses, at short range, the parasitoids were unable to differentiate between S. exigua larvae feeding on physiologically different cotton plants that share large constitutive volatile pools releasable when damaged by herbivores.

Research paper thumbnail of Development of a Lesion-Mimic Phenotype in a Transgenic Wheat Line Overexpressing Genes for Pathogenesis-Related (PR) Proteins Is Dependent on Salicylic Acid Concentration

Molecular Plant-microbe Interactions, 2003

In the course of coexpressing genes for pathogenesis-related (PR) proteins for a class IV chitina... more In the course of coexpressing genes for pathogenesis-related (PR) proteins for a class IV chitinase and an acidic glucanase in transgenic wheat plants, we regenerated a wheat line that developed necrotic lesions containing dead cells in the T2 and subsequent generations. Lesion spots were detected at the booting stage (5- to 6-week-old plants) in lines homozygous for the transgene loci. In contrast, lesions were not observed in hemizygous transgenic lines or lines silenced for transgene expression, indicating a requirement for high levels of transgene expression for the development of the lesioned phenotype. Lesion development was associated with the accumulation of host-encoded PR proteins, e.g., chitinases, beta-1,3-glucanases, thaumatin-like protein, and production of reactive oxygen intermediates. F1 progeny of a cross between the lesion-plus transgenic line and wild-type nontransgenic plants produced progeny with a normal phenotype, while the F2 progenies segregated for the lesion phenotype. Salicylic acid (SA) levels in plants with the lesion-plus phenotype were found to be several times higher than controls and nearly double the levels in hemizygous transgenic plants that lack lesions. SA application activated lesion development in excised leaf pieces of these hemizygous transgenic plants. Similar activation of lesion development in control plants occurred only when high concentrations of SA were applied for prolonged periods. Transcripts for phenylalanine-ammonia lyase, which provides precursors of SA, were elevated in homozygous transgenic plants. Our data suggest that transgene-induced lesion-mimic phenotype correlates with enhanced SA biosynthesis.

Research paper thumbnail of The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites

Plant Journal, 2004

Through complex networks of signaling interactions, phytohormones regulate growth, development, r... more Through complex networks of signaling interactions, phytohormones regulate growth, development, reproduction and responses to biotic and abiotic stress. Comprehensive metabolomic approaches, seeking to quantify changes in vast numbers of plant metabolites, may ultimately clarify these complex signaling interactions and consequently explain pleiotropic effects on plant metabolism. Synergistic and antagonistic phytohormone signaling interactions, referred to as crosstalk, are often considered at the level of transduction without proper consideration of synthesis or accumulation of phytohormones because of the limitation and difficulty in quantifying numerous signals. Significant progress has recently been made in the expansion of metabolic profiling and analysis of multiple phytohormones [Birkemeyer et al. (J. Chromatogr. A, 2003, 993, 89); Chiwocha et al. (Plant J., 2003, 35, 405); Müller et al. (Planta, 2002, 216, 44); Schmelz et al. (Proc. Natl Acad. Sci. USA, 2003, 100, 10552)]. We recently presented a novel metabolic profiling approach to the analysis of acidic phytohormones and other metabolites based on a simplistic preparation scheme and analysis by chemical ionization-gas chromatography/mass spectrometry. We now provide a detailed description of this vapor phase extraction technique and use pathogen infection of Arabidopsis with Pseudomonas syringae DC3000 to illustrate metabolic changes in salicylic acid, cinnamic acid, jasmonic acid, indole-3-acetic acid, abscisic acid, unsaturated C18 fatty acids, 12-oxo-phytodienoic acid, and phytotoxin coronatine. Directions for further method expansion are provided and include issues of recovery, derivatization, range of accessible analytes, optimization, reproducibility and future directions.

Research paper thumbnail of Fungus-Induced Biochemical Changes in Peanut Plants and Their Effect on Development of Beet Armyworm, Spodoptera Exigua Hübner (Lepidoptera: Noctuidae) Larvae

Environmental Entomology, 2003

In choice tests, beet armyworm (BAW), Spodoptera exigua, larvae feed preferentially on leaves fro... more In choice tests, beet armyworm (BAW), Spodoptera exigua, larvae feed preferentially on leaves from peanut plants, Arachis hypogaea L., previously infected by the white mold fungus, Sclerotium rolfsii Saccodes (mitosporic fungi) . In this study we determined that third instar BAW caterpillars allowed to feed on S. rolfsii-infected plants had signiÞcantly higher survival, produced signiÞcantly heavier pupae, and had shorter time to pupation than those allowed to feed on healthy plants. Leaf tissue from white mold infected peanut plants contained similar levels of soluble and insoluble protein, but signiÞcantly higher levels of soluble sugars. In addition, white mold-infected plants had signiÞcantly lower starch content and total soluble phenolics compared with leaves from healthy plants. Levels of jasmonic acid were similar in plants attacked by either the fungus or BAW, but were signiÞcantly higher in plants that were infected by the fungus and then fed on by BAW. Salicylic acid (SA) levels in fungus-infected plants were not signiÞcantly different from those of control plants. However, levels of SA in plants damaged by BAW alone were signiÞcantly lower than those of plants under simultaneous attack by the fungus and BAW.

Research paper thumbnail of XopD SUMO Protease Affects Host Transcription, Promotes Pathogen Growth, and Delays Symptom Development in Xanthomonas-Infected Tomato Leaves

Plant Cell, 2008

We demonstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (X... more We demonstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (Xcv), suppresses symptom production during the late stages of infection in susceptible tomato (Solanum lycopersicum) leaves. XopDdependent delay of tissue degeneration correlates with reduced chlorophyll loss, reduced salicylic acid levels, and changes in the mRNA abundance of senescence-and defense-associated genes despite high pathogen titers. Subsequent structurefunction analyses led to the discovery that XopD is a DNA binding protein that alters host transcription. XopD contains a putative helix-loop-helix domain required for DNA binding and two conserved ERF-associated amphiphilic motifs required to repress salicylic acid-and jasmonic acid-induced gene transcription in planta. Taken together, these data reveal that XopD is a unique virulence factor in Xcv that alters host transcription, promotes pathogen multiplication, and delays the onset of leaf chlorosis and necrosis.

Research paper thumbnail of Nitrogen Deficiency Increases Volicitin-Induced Volatile Emission, Jasmonic Acid Accumulation, and Ethylene Sensitivity in Maize

Plant Physiology, 2003

Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies... more Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies is facilitated by fatty acid-amino acid conjugate (FAC) elicitors, such as volicitin [N-(17-hydroxylinolenoyl)-l-glutamine], present in caterpillar oral secretions. Insect-induced jasmonic acid (JA) and ethylene (E) are believed to mediate the magnitude of this variable response. In maize (Zea mays) seedlings, we examined the interaction of volicitin, JA, and E on the induction of volatile emission at different levels of nitrogen (N) availability that are known to influence E sensitivity. N availability and volicitin-induced sesquiterpene emission are inversely related as maximal responses were elicited in N-deficient plants.

Research paper thumbnail of Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory

Planta, 2003

Jasmonic acid (JA) has long been hypothesized to be an important regulator of insect-induced vola... more Jasmonic acid (JA) has long been hypothesized to be an important regulator of insect-induced volatile emission; however, current models are based primarily on circumstantial evidence derived from pharmacological studies. Using beet armyworm caterpillars (BAW: Spodoptera exigua) and intact corn seedlings, we examine this hypothesis by measuring both the time-course of insect-induced JA levels and the relationships between endogenous JA levels, ethylene, indole and sesquiterpenes. In separate Morning and Evening time-course trials, BAW feeding stimulated increases in JA levels within the first 4–6 h and resulted in maximal increases in JA, indole, sesquiterpenes and ethylene 8–16 h later. During BAW herbivory, increases in JA either paralleled or preceded the increases in indole, sesquiterpenes and ethylene in the Morning and Evening trials, respectively. By varying the intensity of the BAW herbivory, we demonstrate that strong positive relationships exist between the resulting variation in insect-induced JA levels and volatile emissions such as indole and the sesquiterpenes. To address potential signaling interactions between herbivore-induced JA and ethylene, plants were pretreated with 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. 1-MCP pretreatment resulted in reduced production of ethylene and volatile emission following BAW herbivory but did not alter the insect-induced accumulation of JA. Our results strongly support a role for JA in the regulation of insect-induced volatile emission but also suggest that ethylene perception regulates the magnitude of volatile emission during herbivory.

Research paper thumbnail of Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae

Planta, 2003

Pathogen-induced plant responses include changes in both volatile and non-volatile secondary meta... more Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of Pseudomonas syringae. Volatile compounds released by pathogeninoculated tobacco plants were collected, identified, and quantified. Tobacco plants infected with the avirulent strains P. syringae pv. maculicola ES4326 (Psm ES4326) or pv. tomato DC3000 (Pst DC3000), emitted quantitatively different, but qualitatively similar volatile blends of (E)-b-ocimene, linalool, methyl salicylate (MeSA), indole, caryophyllene, b-elemene, a-farnesene, and two unidentified sesquiterpenes. Plants treated with the hrcC mutant of Pst DC3000 (hrcC, deficient in the type-III secretion system) released low levels of many of the same volatile compounds as in Psm ES4326-or Pst DC3000infected plants, with the exception of MeSA, which occurred only in trace amounts. Interaction of the virulent pathogen P. syringae pv. tabaci (Pstb), with tobacco plants resulted in a different volatile blend, consisting of MeSA and two unidentified sesquiterpenes. Overall, maximum volatile emissions occurred within 36 h postinoculation in all the treatments except for the Pstb infection that produced peak volatile emissions about 60 h post-inoculation. (E)-b-Ocimene was released in a diurnal pattern with the greatest emissions during the day and reduced emissions at night. Both avirulent strains, Psm ES4326 and Pst DC3000, induced accumulation of free salicylic acid (SA) within 6 h after inoculation and conjugated SA within 60 h and 36 h respectively. In contrast, SA inductions by the virulent strain Pstb occurred much later and conjugated SA increased slowly for a longer period of time, while the hrcC mutant strain did not trigger free and conjugated SA accumulations in amounts significantly different from control plants. Jasmonic acid, known to induce plant volatile emissions, was not produced in significantly higher levels in inoculated plants compared to the control plants in any treatments, indicating that induced volatile emissions from tobacco plants in response to P. syringae are not linked to changes in jasmonic acid.

Research paper thumbnail of Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings

Journal of Chemical Ecology, 2006

Plants respond to insect attack with the induction of volatiles that function as indirect plant d... more Plants respond to insect attack with the induction of volatiles that function as indirect plant defenses through the attraction of natural enemies to the herbivores. Despite the fact that volatiles are induced in response to caterpillar attack, their reciprocal effects on the host location behaviors of the same foraging herbivores are poorly understood. We examined orientation responses of sixth instar fall armyworm [FAW; Spodoptera frugiperda (Smith)] to odors from herbivore-damaged and undamaged maize seedlings (Zea mays var. Golden Queen) in y-tube olfactometer bioassays. While both damaged and undamaged maize seedlings were attractive compared with air, sixth instars preferred odors from damaged maize seedlings over odors from undamaged maize seedlings. Gas chromatography–mass spectrometry analysis of plant volatiles revealed that linalool and 4,8-dimethyl-1,3,7-nonatriene were the major volatiles induced by FAW herbivory 6 hr after initial damage. Given its prominence in induced plants and established attractiveness to adult FAW, linalool was evaluated both as an individual attractant and as a supplemental component of whole plant odors. Volatile linalool was more attractive than air to sixth instar FAW over a broad range of release rates. FAW also responded selectively to different amounts of linalool, preferring the higher amount. The orientation preferences of FAW were readily manipulated through capillary release of linalool into the airstream of whole plant odors. FAW preferred linalool over undamaged plant odors, and linalool-supplemented plant odors over unsupplemented plant odors, indicating that olfactory preferences could be changed by alteration of a single volatile component. These results suggest that although many induced volatiles attract natural enemies of herbivores, these defenses may also inadvertently recruit more larval herbivores to an attacked plant or neighboring conspecifics.

Research paper thumbnail of The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays

Planta, 2001

Induced plant responses to insect attack include the release of volatile chemicals. These volatil... more Induced plant responses to insect attack include the release of volatile chemicals. These volatiles are used as host-location signals by foraging parasitoids, which are natural enemies of insect herbivores. A plant's response to herbivory can be influenced by factors present in insect oral secretions. Volicitin (N-(17-hydroxylinolenoyl)-L-glutamine), identified in beet armyworm (Spodoptera exigua) oral secretions, stimulates volatile release in corn (Zea mays L.) seedlings in a manner similar to beet armyworm herbivory. Volicitin is hypothesized to trigger release of induced volatiles, at least in part, by modulating levels of the wound hormone, jasmonic acid (JA). We compare the sesquiterpene volatile release of damaged leaves treated with aqueous buffer only or with the same buffer containing volicitin or JA. Leaves were damaged by scratching with a razor and test solutions were applied to the scratched area. The leaves were either excised from the plant or left intact shortly after this treatment. Plants were treated at three different times (designated as Evening, Midnight, and Morning) and volatiles were collected in the subsequent photoperiod. JA and volicitin treatments stimulated the release of volatile sesquiterpenes, namely β-caryophyllene, (E)-α-bergamotene, and (E)-β-farnesene. In all cases, JA stimulated significant sesquiterpene release above mechanical damage alone. Volicitin induced an increase in sesquiterpene volatiles for all excised-leaf bioassays and the Midnight intact plants. Volicitin treatments in the Evening and Morning intact plants produced more sesquiterpenes than the untreated controls, while mechanical damage alone produced an intermediate response that did not differ from either treatment group. Excised leaves produced a 2.5- to 8.0-fold greater volatile response than similarly treated intact plants. Excision also altered the ratio of JA-and volicitin-induced sesquiterpene release by preferentially increasing (E)-β-farnesene levels relative to β-caryophyllene. The inducibility of volatile release varied with time of treatment. On average, sesquiterpene release was highest in the Midnight excised leaves and lowest in the Morning intact plants. The duration of induced volatile release also differed between treatments. On average, JA produced a sustained release of sesquiterpenes over time, with over 20% of the combined sesquiterpenes released in the third and final volatile collection period. In contrast, less than 8% of the combined sesquiterpenes induced by volicitin were emitted during this period. The large quantitative differences between intact plants and detached leaves suggest that the results of assays using excised tissues should be cautiously interpreted when considering intact-plant models.

Research paper thumbnail of Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris

Journal of Chemical Ecology, 1996

We examined the effects of inhibitors of the octadecanoid pathway (n-propyl gallate, acetosalicyl... more We examined the effects of inhibitors of the octadecanoid pathway (n-propyl gallate, acetosalicylic acid, salicylhydroxamic acid, methyl salicylate, and antipyrine) on wound- and jasmonate-induced nicotine accumulation and compared the nicotine-inducing ability of exogeneous additions of linolenic acid (18:3) and its methyl ester, linoleic acid (18:2), abscisic acid, traumatic acid, and methyl dihydrojasmonate to the nicotine-inducing ability of exogenous additions of methyl jasmonate (MJ). The first four of these inhibitors significantly reduced wound-induced nicotine accumulation when applied in a lanolin paste to wounded tissues immediately after wounding at concentrations of 89–90µg/plant. When methyl salicylate and propyl gallate were mixed individually with MJ, neither inhibited MJ-induced nicotine synthesis, which suggests that the inhibitors block jasmonate synthesis or release from stored pools and not its effects. Linolenic acid or its methyl ester applied to undamaged plants or damaged plants (to either damaged or undamaged leaves) or to the roots of hydroponically growing plants did not induce nicotine accumulation or increase nicotine accumulation above levels found in damaged plants. Similarly, traumatic acid, linoleic acid, and abscisic acid did not induce nicotine accumulations. Methyl dihydrojasmonate, which is biosynthetically derived from linoleic acid, had 12–56% of the nicotine-inducing acitivity of MJ when added to the roots of hydroponically grown plants. The signal transduction pathway mediating wound-induced nicotine production therefore shares many features of the pathway eliciting wound-induced proteinase inhibitor production but differs in not being regulated at the lipase step in jasmonic acid production and not being responsive to abscisic acid.

Research paper thumbnail of Insect-Induced Synthesis of Phytoecdysteroids in Spinach, Spinacia oleracea

Journal of Chemical Ecology, 1999

Spinach (Spinacia oleracea) foliage is known to synthesize and accumulate insect molting hormones... more Spinach (Spinacia oleracea) foliage is known to synthesize and accumulate insect molting hormones, predominantly in the form of 20-hydroxyecdysone (20E). We previously demonstrated that root 20E accumulation is increased following root damage. We designed two further experiments to address root responses to both mechanical and insect damage. In plants grown hydroponically, removal of 35% or less of the root mass did not result in changes in root 20E levels. However, removal of 70% of the root mass stimulated 6.0- and 1.5-fold increases in the root and shoot 20E concentrations, respectively. The effects of insect damage on soil-grown plants were investigated by infesting plant roots with black vine weevil (BVW: Otiorhynchus sulcatus) larvae and allowing them to feed for seven days. Decreases in root mass occurred in young plants; however, no changes were detected in mature plants. In all cases, root herbivory resulted in at least a 3.0-fold increase in root 20E concentrations. Our previous experiments implicated jasmonic acid and the analog methyl jasmonate (MJ) in signaling the damage-induced accumulation of root 20E levels. We investigated the activity of other phytohormones and growth regulators (GRs) on the 20E accumulation patterns of young plants as a means of examining the significance of jasmonates in the induction response. Hydroponic additions of MJ (0.5 μM) and the synthetic auxin, 1-naphthaleneacetic acid (NAA; 0.5 μM), resulted in significant increases in root 20E levels. At the concentrations tested, indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA), and trans-zeatin (Z) had no effects on root 20E concentrations. However, both NAA (0.5–5.0 μM) and Z (5.0 μM) treatments caused increases in the root/shoot dry mass ratios, indicating shifts in resource allocation to the roots. Treatments involving ABA (5.0 μM) and Z (0.5–5.0 μM) caused significant increases in shoot 20E concentrations. No other hormone treatments altered shoot accumulation patterns. The mechanisms underlying the root 20E induction phenomena were investigated through the incorporation of [2-14C]mevalonic acid ([14C]MVA). Within one day, excised roots readily incorporated radioactivity into 20E from [14C]MVA. In intact plants, [14C]MVA absorbed by the roots was rapidly incorporated into root 20E pools following damage and MJ treatments. This implies that the wound-induced root 20E accumulation is the result of increased de novo 20E synthesis in the root.

Research paper thumbnail of Identification of loci affecting flavour volatile emissions in tomato fruits

Journal of Experimental Botany, 2006

Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of appr... more Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of approximately 30 volatile compounds synthesized from a diverse set of precursors, including amino acids, lipids, and carotenoids. Some of these volatiles impart desirable qualities while others are negatively perceived. As a first step to identify the genes responsible for the synthesis of flavour-related chemicals, an attempt was made to identify loci that influence the chemical composition of ripe fruits. A genetically diverse but well-defined Solanum pennellii IL population was used. Because S. pennellii is a small green-fruited species, this population exhibits great biochemical diversity and is a rich source of genes affecting both fruit development and chemical composition. This population was used to identify multiple loci affecting the composition of chemicals related to flavour. Twenty-five loci were identified that are significantly altered in one or more of 23 different volatiles and four were altered in citric acid content. It was further shown that emissions of carotenoid-derived volatiles were directly correlated with the fruit carotenoid content. Linked molecular markers should be useful for breeding programmes aimed at improving fruit flavour. In the longer term, the genes responsible for controlling the levels of these chemicals will be important tools for understanding the complex interactions that ultimately integrate to provide the unique flavour of a tomato.

Research paper thumbnail of Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris

Planta, 1997

Jasmonic acid (JA) is thought to be part of a signal-transduction pathway which dramatically incr... more Jasmonic acid (JA) is thought to be part of a signal-transduction pathway which dramatically increases de-novo nicotine synthesis in the roots and increases whole-plant (WP) nicotine pools in response to the wounding of the leaves in Nicotiana sylvestrisSpegazzini and Comes (Solanaceae). We report the synthesis of a doubly labeled JA ([1, 2-13C]JA) and use it as an internal standard to quantify by gas chromatography-mass spectrometry the changes in root and shoot JA pools in plants subjected to differing amounts of standardized leaf wounding. Wounding increased JA pools 10-fold locally in damaged leaves within 90 min and systemically in the roots (3.5-fold) 180 min after wounding. If JA functions as an intermediary between stimulus and response, quantitative relationships among the stimulus, JA, and the response should exist. To examine these relationships, we varied the number of punctures in four leaves and quantified both the resulting JA in damaged leaves after 90 min and the resulting WP nicotine concentration after 5 d. We found statistically significant, positive relationships among number of leaf punctures, endogenous JA, and WP nicotine accumulation. We used two inhibitors of wound-induced nicotine production, methyl salicylate and indole-3-acetic acid, to manipulate the relationships between wound-induced changes in JA and WP nicotine accumulation. Since wounding and the response to wounding occur in widely separated tissues, we applied inhibitors to different plant parts to examine their effects on the local and systemic components of this response. In all experiments, inhibition of the wound-induced increase in leaf JA 90 min after wounding was associated with the inhibition of the nicotine response 5 d after wounding. We conclude that wound-induced increases in leaf JA are an important component of this long-distance signal-transduction pathway.

Research paper thumbnail of Phytohormone-based activity mapping of insect herbivore-produced elicitors

Proceedings of The National Academy of Sciences, 2009

In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the i... more In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the induced production of direct and indirect defenses. Elicitors present in herbivore oral secretions are believed to positively regulate many inducible plant defenses; however, little is known about the specificity of elicitor recognition in plants. To investigate the phylogenic distribution of elicitor activity, we tested representatives from three different elicitor classes on the time course of defense-related phytohormone production, including ethylene (E), jasmonic acid (JA), and salicylic acid, in a range of plant species spanning angiosperm diversity. All families examined responded to at least one elicitor class with significant increases in E and JA production within 1 to 2 h after treatment, yet elicitation activity among species was highly idiosyncratic. The fatty-acid amino acid conjugate volicitin exhibited the widest range of phytohormone and volatile inducing activity, which spanned maize (Zea mays), soybean (Glycine max), and eggplant (Solanum melongena). In contrast, the activity of inceptinrelated peptides, originally described in cowpea (Vigna unguiculata), was limited even within the Fabaceae. Similarly, caeliferin A16:0, a disulfooxy fatty acid from grasshoppers, was the only elicitor with demonstrable activity in Arabidopsis thaliana. Although precise mechanisms remain unknown, the unpredictable nature of elicitor activity between plant species supports the existence of specific receptor-ligand interactions mediating recognition. Despite the lack of an ideal plant model for studying the action of numerous elicitors, E and JA exist as highly conserved and readily quantifiable markers for future discoveries in this field. ethylene ͉ insect elicitor ͉ jasmonic acid ͉ plant defense ͉ volatile organic compound This article contains supporting information online at www.pnas.org/cgi/content/full/ 0811861106/DCSupplemental.

Research paper thumbnail of An herbivore elicitor activates the gene for indole emission in maize

Proceedings of The National Academy of Sciences, 2000

Maize and a variety of other plant species release volatile compounds in response to herbivore at... more Maize and a variety of other plant species release volatile compounds in response to herbivore attack that serve as chemical cues to signal natural enemies of the feeding herbivore. N-(17-hydroxylinolenoyl)-L-glutamine is an elicitor component that has been isolated and chemically characterized from the regurgitant of the herbivore-pest beet armyworm. This fatty acid derivative, referred to as volicitin, triggers the synthesis and release of volatile components, including terpenoids and indole in maize. Here we report on a previously unidentified enzyme, indole-3-glycerol phosphate lyase (IGL), that catalyzes the formation of free indole and is selectively activated by volicitin. IGL's enzymatic properties are similar to BX1, a maize enzyme that serves as the entry point to the secondary defense metabolites DIBOA and DIMBOA. Genesequence analysis indicates that Igl and Bx1 are evolutionarily related to the tryptophan synthase alpha subunit. † To whom reprint requests should be addressed at:

Research paper thumbnail of Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas

Plant Physiology, 2005

fax 352-392-3870.

Research paper thumbnail of Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes

Journal of Chemical Ecology, 1994

Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a dam... more Leaf damage by herbivores inNicotiana sylvestris Spegazzini and Comes (Solanaceae) produces a damage signal that dramatically increasesde novo nicotine synthesis in the roots. The increased synthesis leads to increases in whole-plant nicotine pools, which in turn make plants more resistant to further herbivore attack. Because signal production and the response to the signal occur in widely separated tissues, the speed with which different damage signals exit a damaged leaf can be studied. We propose that electrical damage signals should exit a leaf faster (less than 60 min) than chemical damage signals. Excision of a leaf induces a smaller increase in nicotine production than does puncture damage, so we examined our proposition by excising previously punctured leaves at 1, 60, and 960 min after leaf puncture and quantifying the induced whole-plant nicotine pools six days later when the induced nicotine production had reached a maximum. Significant induced nicotine production occurred only if punctured leaves were excised more than 1 hr after puncture, which is consistent with the characteristics of a slow-moving chemical signal rather than a fast-moving electrical signal. We explore the nature of the chemical signal and demonstrate that additions of 90µg or more of methyl jasmonate (MJ) in an aqueous solution to the roots of hydroponically grown plants inducede novo nicotine synthesis from15NO3 in a manner similar to that induced by leaf damage. We examine the hypothesis that jasmonic acid (JA) functions in the transfer of the damage signal from shoot to root. Using GC-MS techniques to quantify whole-plant JA pools, we demonstrate that leaf damage rapidly (µg) of MJ in a lanolin paste to leaves from hydroponically grown plants significantly increased endogenous root JA pools and increasedde novo nicotine synthesis in these plants. However, the addition of 93µg or less of MJ did not significantly increase endogenous root JA pools and did not significantly affectde novo nicotine synthesis. We propose that wounding increases shoot JA pools, which either directly through transport or indirectly through a systemin-like signal increase root JA pools, which, in turn, stimulate root nicotine synthesis and increase whole-plant nicotine pools.

Research paper thumbnail of Damage-Induced Accumulation of Phytoecdysteroids in Spinach: A Rapid Root Response Involving the Octadecanoic Acid Pathway

Journal of Chemical Ecology, 1998

Some plant defenses are known to be rapidly induced following attack by phytophagous insects. Pla... more Some plant defenses are known to be rapidly induced following attack by phytophagous insects. Plant-produced insect molting hormones, termed phytoecdysteroids, are believed to aid plant resistance; however, their dynamics are poorly understood. Using spinach (Spinacia oleracea) as a model system, we examined the inducibility of phytoecdysteroids, primarily 20-hydroxyecdysone (20E), in an effort to characterize potential interactions with herbivorous insects. Rapid phytochemical induction was investigated using damage treatments and applications of defense-related plant-signal analogs, specifically methyl jasmonate (MJ) and methyl salicylate (MSA). Within two days, mechanically damaged roots exhibited two to three fold increases in phytoecdysteroid concentrations. Four days after root damage, small increases in shoot levels were also detectable. Unlike roots, foliar 20E concentrations were unaltered over a range of shoot treatments including insect herbivory (Spodoptera exigua), mechanical damage, and MJ applications. Additions of MJ (12.5–50 μg/liter) to the root systems of hydroponically grown plants stimulated accumulations of root phytoecdysteroids in a dose-dependent manner, similar in magnitude to the response induced by root damage. Under identical conditions, MSA did not affect the accumulation of 20E when added to the hydroponic solutions of undamaged plants. Moreover, MSA inhibited the induction of 20E in wounded roots, but did not interfere with the action of applied MJ. In contrast to mechanical damage, roots did not induce 20E levels when challenged with two different fungal pathogens (Pythium aphanidermatum and Phytophthora capsici).We propose that wound-induced accumulations of 20E are generated in the roots, signaled via endogenous jasmonates, and may confer enhanced resistance against subterranean herbivorous insects.

Research paper thumbnail of Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays

Physiologia Plantarum, 2003

Plants display differential responses following mechanical damage and insect herbivory. Both cate... more Plants display differential responses following mechanical damage and insect herbivory. Both caterpillar attack and the application of caterpillar oral secretions (OS) to wounded leaves stimulates volatile emission above mechanical damage alone. Volicitin (N-17-hydroxylinolenoyl-L-glutamine), present in beet armyworm (BAW, Spodoptera exigua) OS, is a powerful elicitor of volatiles in excised maize seedlings (Zea mays cv. Delprim). We consider some of the mechanistic differences between wounding and insect herbivory in maize by examining the activity of volicitin, changes in jasmonic acid (JA) levels, and volatile emission from both intact plant and excised leaf bioassays. Compared to mechanical damage alone, volicitin stimulated increases in both JA levels and sesquiterpene volatiles when applied to intact plants. In a bioassay comparison, excised leaves were more sensitive and produced far greater volatile responses than intact plants following applications of both volicitin and JA. In the excised leaf bioassay, volicitin applications (10±500 pmol) to wounded leaves resulted in dose dependent JA increases and a direct positive relationship between JA and sesquiterpene volatile emission. Interestingly, volicitin-induced JA levels did not differ between intact and excised bioassays, suggesting a possible interaction of JA with other regulatory signals in excised plants. In addition to JA, insect herbivory is known to stimulate the production of ethylene. Significant increases in ethylene were induced only by BAW herbivory and not by either wounding or volicitin treatments. Using intact plant bioassays, ethylene (at 1 ml l À1 or less) greatly promoted volatile emission induced by volicitin and JA but not mechanical damage alone. For intact plants, wounding, elicitor-induced JA and insect-induced ethylene appear to be important interacting components in the stimulation of insect-induced volatile emission.

Research paper thumbnail of Cotton Plant, Gossypium hirsutum L., Defense in Response to Nitrogen Fertilization

Journal of Chemical Ecology, 2008

Plants respond to insect herbivory by producing dynamic changes in an array of defense-related vo... more Plants respond to insect herbivory by producing dynamic changes in an array of defense-related volatile and nonvolatile secondary metabolites. A scaled response relative to herbivory levels and nutrient availability would be adaptive, particularly under nutrient-limited conditions, in minimizing the costs of expressed defensive pathways and synthesis. In this study, we investigated effects of varying nitrogen (N) fertilization (42, 112, 196, and 280 ppm N) on levels of cotton plant (Gossypium hirsutum) phytohormones [jasmonic acid (JA) and salicylic acid (SA)], terpenoid aldehydes (hemigossypolone, heliocides H1, H2, H3, and H4), and volatile production in response to beet armyworm (Spodoptera exigua) herbivory. Additional bioassays assessed parasitoid (Cotesia marginiventris) host-searching success in response to cotton plants grown under various N fertilizer regimes. At low N input (42 ppm N), herbivore damage resulted in significant increases in local leaf tissue concentrations of JA and volatiles and in systemic accumulation of terpenoid aldehydes. However, increased N fertilization of cotton plants suppressed S. exigua-induced plant hormones and led to reduced production of various terpenoid aldehydes in damaged mature leaves and undamaged young leaves. While increased N fertilization significantly diminished herbivore-induced leaf volatile concentrations, the parasitism of S. exigua larvae by the parasitoid C. marginiventris in field cages did not differ among N treatments. This suggests that, despite significant N fertilization effects on herbivore-induced plant defenses, at short range, the parasitoids were unable to differentiate between S. exigua larvae feeding on physiologically different cotton plants that share large constitutive volatile pools releasable when damaged by herbivores.

Research paper thumbnail of Development of a Lesion-Mimic Phenotype in a Transgenic Wheat Line Overexpressing Genes for Pathogenesis-Related (PR) Proteins Is Dependent on Salicylic Acid Concentration

Molecular Plant-microbe Interactions, 2003

In the course of coexpressing genes for pathogenesis-related (PR) proteins for a class IV chitina... more In the course of coexpressing genes for pathogenesis-related (PR) proteins for a class IV chitinase and an acidic glucanase in transgenic wheat plants, we regenerated a wheat line that developed necrotic lesions containing dead cells in the T2 and subsequent generations. Lesion spots were detected at the booting stage (5- to 6-week-old plants) in lines homozygous for the transgene loci. In contrast, lesions were not observed in hemizygous transgenic lines or lines silenced for transgene expression, indicating a requirement for high levels of transgene expression for the development of the lesioned phenotype. Lesion development was associated with the accumulation of host-encoded PR proteins, e.g., chitinases, beta-1,3-glucanases, thaumatin-like protein, and production of reactive oxygen intermediates. F1 progeny of a cross between the lesion-plus transgenic line and wild-type nontransgenic plants produced progeny with a normal phenotype, while the F2 progenies segregated for the lesion phenotype. Salicylic acid (SA) levels in plants with the lesion-plus phenotype were found to be several times higher than controls and nearly double the levels in hemizygous transgenic plants that lack lesions. SA application activated lesion development in excised leaf pieces of these hemizygous transgenic plants. Similar activation of lesion development in control plants occurred only when high concentrations of SA were applied for prolonged periods. Transcripts for phenylalanine-ammonia lyase, which provides precursors of SA, were elevated in homozygous transgenic plants. Our data suggest that transgene-induced lesion-mimic phenotype correlates with enhanced SA biosynthesis.

Research paper thumbnail of The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites

Plant Journal, 2004

Through complex networks of signaling interactions, phytohormones regulate growth, development, r... more Through complex networks of signaling interactions, phytohormones regulate growth, development, reproduction and responses to biotic and abiotic stress. Comprehensive metabolomic approaches, seeking to quantify changes in vast numbers of plant metabolites, may ultimately clarify these complex signaling interactions and consequently explain pleiotropic effects on plant metabolism. Synergistic and antagonistic phytohormone signaling interactions, referred to as crosstalk, are often considered at the level of transduction without proper consideration of synthesis or accumulation of phytohormones because of the limitation and difficulty in quantifying numerous signals. Significant progress has recently been made in the expansion of metabolic profiling and analysis of multiple phytohormones [Birkemeyer et al. (J. Chromatogr. A, 2003, 993, 89); Chiwocha et al. (Plant J., 2003, 35, 405); Müller et al. (Planta, 2002, 216, 44); Schmelz et al. (Proc. Natl Acad. Sci. USA, 2003, 100, 10552)]. We recently presented a novel metabolic profiling approach to the analysis of acidic phytohormones and other metabolites based on a simplistic preparation scheme and analysis by chemical ionization-gas chromatography/mass spectrometry. We now provide a detailed description of this vapor phase extraction technique and use pathogen infection of Arabidopsis with Pseudomonas syringae DC3000 to illustrate metabolic changes in salicylic acid, cinnamic acid, jasmonic acid, indole-3-acetic acid, abscisic acid, unsaturated C18 fatty acids, 12-oxo-phytodienoic acid, and phytotoxin coronatine. Directions for further method expansion are provided and include issues of recovery, derivatization, range of accessible analytes, optimization, reproducibility and future directions.

Research paper thumbnail of Fungus-Induced Biochemical Changes in Peanut Plants and Their Effect on Development of Beet Armyworm, Spodoptera Exigua Hübner (Lepidoptera: Noctuidae) Larvae

Environmental Entomology, 2003

In choice tests, beet armyworm (BAW), Spodoptera exigua, larvae feed preferentially on leaves fro... more In choice tests, beet armyworm (BAW), Spodoptera exigua, larvae feed preferentially on leaves from peanut plants, Arachis hypogaea L., previously infected by the white mold fungus, Sclerotium rolfsii Saccodes (mitosporic fungi) . In this study we determined that third instar BAW caterpillars allowed to feed on S. rolfsii-infected plants had signiÞcantly higher survival, produced signiÞcantly heavier pupae, and had shorter time to pupation than those allowed to feed on healthy plants. Leaf tissue from white mold infected peanut plants contained similar levels of soluble and insoluble protein, but signiÞcantly higher levels of soluble sugars. In addition, white mold-infected plants had signiÞcantly lower starch content and total soluble phenolics compared with leaves from healthy plants. Levels of jasmonic acid were similar in plants attacked by either the fungus or BAW, but were signiÞcantly higher in plants that were infected by the fungus and then fed on by BAW. Salicylic acid (SA) levels in fungus-infected plants were not signiÞcantly different from those of control plants. However, levels of SA in plants damaged by BAW alone were signiÞcantly lower than those of plants under simultaneous attack by the fungus and BAW.

Research paper thumbnail of XopD SUMO Protease Affects Host Transcription, Promotes Pathogen Growth, and Delays Symptom Development in Xanthomonas-Infected Tomato Leaves

Plant Cell, 2008

We demonstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (X... more We demonstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (Xcv), suppresses symptom production during the late stages of infection in susceptible tomato (Solanum lycopersicum) leaves. XopDdependent delay of tissue degeneration correlates with reduced chlorophyll loss, reduced salicylic acid levels, and changes in the mRNA abundance of senescence-and defense-associated genes despite high pathogen titers. Subsequent structurefunction analyses led to the discovery that XopD is a DNA binding protein that alters host transcription. XopD contains a putative helix-loop-helix domain required for DNA binding and two conserved ERF-associated amphiphilic motifs required to repress salicylic acid-and jasmonic acid-induced gene transcription in planta. Taken together, these data reveal that XopD is a unique virulence factor in Xcv that alters host transcription, promotes pathogen multiplication, and delays the onset of leaf chlorosis and necrosis.

Research paper thumbnail of Nitrogen Deficiency Increases Volicitin-Induced Volatile Emission, Jasmonic Acid Accumulation, and Ethylene Sensitivity in Maize

Plant Physiology, 2003

Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies... more Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies is facilitated by fatty acid-amino acid conjugate (FAC) elicitors, such as volicitin [N-(17-hydroxylinolenoyl)-l-glutamine], present in caterpillar oral secretions. Insect-induced jasmonic acid (JA) and ethylene (E) are believed to mediate the magnitude of this variable response. In maize (Zea mays) seedlings, we examined the interaction of volicitin, JA, and E on the induction of volatile emission at different levels of nitrogen (N) availability that are known to influence E sensitivity. N availability and volicitin-induced sesquiterpene emission are inversely related as maximal responses were elicited in N-deficient plants.

Research paper thumbnail of Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory

Planta, 2003

Jasmonic acid (JA) has long been hypothesized to be an important regulator of insect-induced vola... more Jasmonic acid (JA) has long been hypothesized to be an important regulator of insect-induced volatile emission; however, current models are based primarily on circumstantial evidence derived from pharmacological studies. Using beet armyworm caterpillars (BAW: Spodoptera exigua) and intact corn seedlings, we examine this hypothesis by measuring both the time-course of insect-induced JA levels and the relationships between endogenous JA levels, ethylene, indole and sesquiterpenes. In separate Morning and Evening time-course trials, BAW feeding stimulated increases in JA levels within the first 4–6 h and resulted in maximal increases in JA, indole, sesquiterpenes and ethylene 8–16 h later. During BAW herbivory, increases in JA either paralleled or preceded the increases in indole, sesquiterpenes and ethylene in the Morning and Evening trials, respectively. By varying the intensity of the BAW herbivory, we demonstrate that strong positive relationships exist between the resulting variation in insect-induced JA levels and volatile emissions such as indole and the sesquiterpenes. To address potential signaling interactions between herbivore-induced JA and ethylene, plants were pretreated with 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. 1-MCP pretreatment resulted in reduced production of ethylene and volatile emission following BAW herbivory but did not alter the insect-induced accumulation of JA. Our results strongly support a role for JA in the regulation of insect-induced volatile emission but also suggest that ethylene perception regulates the magnitude of volatile emission during herbivory.

Research paper thumbnail of Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae

Planta, 2003

Pathogen-induced plant responses include changes in both volatile and non-volatile secondary meta... more Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of Pseudomonas syringae. Volatile compounds released by pathogeninoculated tobacco plants were collected, identified, and quantified. Tobacco plants infected with the avirulent strains P. syringae pv. maculicola ES4326 (Psm ES4326) or pv. tomato DC3000 (Pst DC3000), emitted quantitatively different, but qualitatively similar volatile blends of (E)-b-ocimene, linalool, methyl salicylate (MeSA), indole, caryophyllene, b-elemene, a-farnesene, and two unidentified sesquiterpenes. Plants treated with the hrcC mutant of Pst DC3000 (hrcC, deficient in the type-III secretion system) released low levels of many of the same volatile compounds as in Psm ES4326-or Pst DC3000infected plants, with the exception of MeSA, which occurred only in trace amounts. Interaction of the virulent pathogen P. syringae pv. tabaci (Pstb), with tobacco plants resulted in a different volatile blend, consisting of MeSA and two unidentified sesquiterpenes. Overall, maximum volatile emissions occurred within 36 h postinoculation in all the treatments except for the Pstb infection that produced peak volatile emissions about 60 h post-inoculation. (E)-b-Ocimene was released in a diurnal pattern with the greatest emissions during the day and reduced emissions at night. Both avirulent strains, Psm ES4326 and Pst DC3000, induced accumulation of free salicylic acid (SA) within 6 h after inoculation and conjugated SA within 60 h and 36 h respectively. In contrast, SA inductions by the virulent strain Pstb occurred much later and conjugated SA increased slowly for a longer period of time, while the hrcC mutant strain did not trigger free and conjugated SA accumulations in amounts significantly different from control plants. Jasmonic acid, known to induce plant volatile emissions, was not produced in significantly higher levels in inoculated plants compared to the control plants in any treatments, indicating that induced volatile emissions from tobacco plants in response to P. syringae are not linked to changes in jasmonic acid.