Melissa Rocha | Universidade Federal do Rio Grande do Sul (original) (raw)
Uploads
Papers by Melissa Rocha
In this dissertation, computational fluid dynamics (CFD) simulations were applied to develop equi... more In this dissertation, computational fluid dynamics (CFD) simulations were applied to develop equivalent reactor networks (ERN) for the study of a bubbling fluidized bed reactor from CIENTEC-RS, used for coal gasification. Initially, the computational geometry of the gasifier was created using the software CFX 13.0, based on field measurements and design data. Mesh convergence tests were carried out in order to choose the most appropriate for obtaining accurate solutions, using gas-phase reactions. Different variations in geometry were proposed in order to reduce the computational cost of the simulations, while maintaining the quality of the results. The simulations also evaluated the typical flow patterns of the reactor operating in the gaseous phase and in the presence of a fluidized bed. The flow patterns were used as a basis for proposing equivalent reactor networks for the CIENTEC reactor, using a detailed kinetic model to determine the reaction rates in the gas phase. For methodology evaluation purposes, simulations involving the combustion of methane were conducted, similar to the study in CFD, as well as the coal gasification process. The aim of the study was to evaluate the crucial points in the development of an ERN model and to predict the characteristics of the gaseous product streams obtained for different operating conditions. It is expected that this model can be used for the improvement and optimization of the gasification process, in order to obtain a gas with energetic potential and suitable for using it as a feedstock for carbochemical processes.
In this dissertation, computational fluid dynamics (CFD) simulations were applied to develop equi... more In this dissertation, computational fluid dynamics (CFD) simulations were applied to develop equivalent reactor networks (ERN) for the study of a bubbling fluidized bed reactor from CIENTEC-RS, used for coal gasification. Initially, the computational geometry of the gasifier was created using the software CFX 13.0, based on field measurements and design data. Mesh convergence tests were carried out in order to choose the most appropriate for obtaining accurate solutions, using gas-phase reactions. Different variations in geometry were proposed in order to reduce the computational cost of the simulations, while maintaining the quality of the results. The simulations also evaluated the typical flow patterns of the reactor operating in the gaseous phase and in the presence of a fluidized bed. The flow patterns were used as a basis for proposing equivalent reactor networks for the CIENTEC reactor, using a detailed kinetic model to determine the reaction rates in the gas phase. For methodology evaluation purposes, simulations involving the combustion of methane were conducted, similar to the study in CFD, as well as the coal gasification process. The aim of the study was to evaluate the crucial points in the development of an ERN model and to predict the characteristics of the gaseous product streams obtained for different operating conditions. It is expected that this model can be used for the improvement and optimization of the gasification process, in order to obtain a gas with energetic potential and suitable for using it as a feedstock for carbochemical processes.