Denis de Castro Pereira | UFSJ - Federal University of São João Del-Rei (original) (raw)
Papers by Denis de Castro Pereira
2014 11th IEEE/IAS International Conference on Industry Applications, 2014
This work presents a comparative study of singlephase boost-based ac-dc converters applied to pow... more This work presents a comparative study of singlephase boost-based ac-dc converters applied to power factor correction. Three structures are chosen for this purpose and analyzed in detail e.g. the classical boost converter, the bridgeless boost converter, and the boost converter based on the three-state switching cell (3SSC) operating in continuous conduction mode (CCM). The aforementioned topologies are briefly revised so that they can be properly designed and validated considering results obtained from simulation tests, where aspects such as the input current, regulated output voltage, harmonic content, and dynamic response are investigated.
International Journal of Electronics, 2014
High power factor rectifiers have been consolidated as an effective solution to improve power qua... more High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.
IET Power Electronics, 2015
The major consideration in dc-dc conversion is often associated with high efficiency, reduced str... more The major consideration in dc-dc conversion is often associated with high efficiency, reduced stresses involving semiconductors, low cost, simplicity and robustness of the involved topologies. In the last few years, high-step-up nonisolated dc-dc converters have become quite popular because of its wide applicability, especially considering that dc-ac converters must be typically supplied with high dc voltages. The conventional non-isolated boost converter is the most popular topology for this purpose, although the conversion efficiency is limited at high duty cycle values. In order to overcome such limitation and improve the conversion ratio, derived topologies can be found in numerous publications as possible solutions for the aforementioned applications. Within this context, this work intends to classify and review some of the most important non-isolated boost-based dc-dc converters. While many structures exist, they can be basically classified as converters with and without wide conversion ratio. Some of the main advantages and drawbacks regarding the existing approaches are also discussed. Finally, a proper comparison is established among the most significant converters regarding the voltage stress across the semiconductor elements, number of components and static gain.
2014 11th IEEE/IAS International Conference on Industry Applications, 2014
This work presents a comparative study of singlephase boost-based ac-dc converters applied to pow... more This work presents a comparative study of singlephase boost-based ac-dc converters applied to power factor correction. Three structures are chosen for this purpose and analyzed in detail e.g. the classical boost converter, the bridgeless boost converter, and the boost converter based on the three-state switching cell (3SSC) operating in continuous conduction mode (CCM). The aforementioned topologies are briefly revised so that they can be properly designed and validated considering results obtained from simulation tests, where aspects such as the input current, regulated output voltage, harmonic content, and dynamic response are investigated.
International Journal of Electronics, 2014
High power factor rectifiers have been consolidated as an effective solution to improve power qua... more High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.
IET Power Electronics, 2015
The major consideration in dc-dc conversion is often associated with high efficiency, reduced str... more The major consideration in dc-dc conversion is often associated with high efficiency, reduced stresses involving semiconductors, low cost, simplicity and robustness of the involved topologies. In the last few years, high-step-up nonisolated dc-dc converters have become quite popular because of its wide applicability, especially considering that dc-ac converters must be typically supplied with high dc voltages. The conventional non-isolated boost converter is the most popular topology for this purpose, although the conversion efficiency is limited at high duty cycle values. In order to overcome such limitation and improve the conversion ratio, derived topologies can be found in numerous publications as possible solutions for the aforementioned applications. Within this context, this work intends to classify and review some of the most important non-isolated boost-based dc-dc converters. While many structures exist, they can be basically classified as converters with and without wide conversion ratio. Some of the main advantages and drawbacks regarding the existing approaches are also discussed. Finally, a proper comparison is established among the most significant converters regarding the voltage stress across the semiconductor elements, number of components and static gain.