Giuseppe Andrea Sautto | The University of Georgia (original) (raw)
Uploads
Papers by Giuseppe Andrea Sautto
Vaccines
In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we as... more In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vaccination. Participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to higher antibody levels, which were maintained at higher levels than in previously infected, unvaccinated participants. Older participants exhibited lower level of antibodies after vaccination, but a higher level after infection than younger people. The rate of antibody waning was not affected by pre-immunity or age. Participants who received a third dose of an mRNA vaccine not only increased their antibody levels ~14-fold, but also had ~3 times more antibodies compared to when they received their primary vaccine series. PBMC-derived memory B cell...
Vaccines
Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a glo... more Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or ...
Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong ... more Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong and, since its discovery, it was reported in domestic cats worldwide. Although a potential association between FeMV infection and tubulointerstitial nephritis (TIN) has been suggested, this has not been proven, and the subject remains controversial. TIN is the most frequent histopathological finding in the context of feline chronic kidney disease (CKD), which is one of the major clinical pathologies in feline medicine. FeMV research has mainly focused on defining the epidemiology, the role of FeMV in the development of CKD, and its in vitro tropism, but the pathogenicity of FeMV is still not clear, partly due to its distinctive biological characteristics, as well as to a lack of a cell culture system for its rapid isolation. In this review, we summarize the current knowledge of FeMV infection, including genetic diversity of FeMV strains, epidemiology, pathogenicity, and clinicopathologic...
Journal of Virology, 2021
Next-generation influenza virus hemagglutinin (HA)-based Computationally-Optimized Broadly Reacti... more Next-generation influenza virus hemagglutinin (HA)-based Computationally-Optimized Broadly Reactive Antigens (COBRAs) are capable of eliciting a broader neutralizing antibody response compared to current standard of care influenza virus vaccines (1-3).….
Theranostics, 2021
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to u... more Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
Theranostics, 2021
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to u... more Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
PLOS ONE, 2021
Recent advances in high-throughput single cell sequencing have opened up new avenues into the inv... more Recent advances in high-throughput single cell sequencing have opened up new avenues into the investigation of B cell receptor (BCR) repertoires. In this study, PBMCs were collected from 17 human participants vaccinated with the split-inactivated influenza virus vaccine during the 2016–2017 influenza season. A combination of Immune Repertoire Capture (IRCTM) technology and IgG sequencing was performed on ~7,800 plasmablast (PB) cells and preferential IgG heavy-light chain pairings were investigated. In some participants, a single expanded clonotype accounted for ~22% of their PB BCR repertoire. Approximately 60% (10/17) of participants experienced convergent evolution, possessing public PBs that were elicited independently in multiple participants. Binding profiles of one private and three public PBs confirmed they were all subtype-specific, cross-reactive hemagglutinin (HA) head-directed antibodies. Collectively, this high-resolution antibody repertoire analysis demonstrated the im...
Cell, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Betacoronavirus SARS-CoV-2 is posing a major threat to human health and its diffusion around the ... more Betacoronavirus SARS-CoV-2 is posing a major threat to human health and its diffusion around the world is having dire socioeconomical consequences. Thanks to the scientific community’s unprecedented efforts, the atomic structure of several viral proteins has been promptly resolved. As the crucial mediator of host cell infection, the heavily glycosylated trimeric viral Spike protein (S) has been attracting the most attention and is at the center of efforts to develop antivirals, vaccines, and diagnostic solutions.Herein, we use an energy-decomposition approach to identify antigenic domains and antibody binding sites on the fully glycosylated S protein. Crucially, all that is required by our method are unbiased atomistic molecular dynamics simulations; no prior knowledge of binding properties or ad hoc combinations of parameters/measures extracted from simulations is needed. Our method simply exploits the analysis of energy interactions between all intra-protomer aminoacid and monosac...
Frontiers in Immunology, 2020
Influenza is a highly contagious viral respiratory disease that affects millions of people worldw... more Influenza is a highly contagious viral respiratory disease that affects millions of people worldwide each year. Annual vaccination is recommended by the World Health Organization to reduce influenza severity and limit transmission through elicitation of antibodies targeting mainly the hemagglutinin glycoprotein of the influenza virus. Antibodies elicited by current seasonal influenza vaccines are predominantly strain-specific. However, continuous antigenic drift by circulating influenza viruses facilitates escape from pre-existing antibodies requiring frequent reformulation of the seasonal influenza vaccine. Traditionally, immunological responses to influenza vaccination have been largely focused on IgG antibodies, with almost complete disregard of other isotypes. In this report, young adults (18-34 years old) and elderly (65-85 years old) subjects were administered the split inactivated influenza vaccine for 3 consecutive seasons and their serological IgA and IgG responses were profiled. Moreover, correlation analysis showed a positive relationship between vaccine-induced IgA antibody titers and traditional immunological endpoints, exposing vaccine-induced IgA antibodies as an important novel immune correlate during influenza vaccination.
Journal of Virology, 2020
Computationally Optimized Broadly Reactive Antigens (COBRA) designed for different influenza viru... more Computationally Optimized Broadly Reactive Antigens (COBRA) designed for different influenza virus subtypes (H1N1, H3N2 and H5N1) elicit a subtype-specific broad antibody (Ab) response in naïve as well as in pre-immune influenza virus animal models (1-9).…
Journal of Immunology Research, 2019
Journal of Immunology Research, 2019
Vaccines are recognized worldwide as one of the most important tools for combating infectious dis... more Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, th...
ImmunoHorizons, 2018
Influenza viruses represent a threat to the world population. The currently available standard of... more Influenza viruses represent a threat to the world population. The currently available standard of care influenza vaccines are offered for each influenza season to prevent infection and spread of influenza viruses. Current vaccine formulations rely on using wild-type Ags, including the hemagglutinin (HA) and neuraminidase (NA) proteins as the primary immune targets of the vaccine. However, vaccine effectiveness varies from season to season, ranging from 10 to 75% depending on season and on age group studied. To improve rates of vaccine effectiveness, a new generation of computationally optimized broadly reactive Ags (COBRA)-based vaccines have been developed as a next-generation influenza vaccine. In this report, mice were intranasally, i.p., or i.m. primed with reassortant influenza viruses expressing different H1N1 COBRA HA proteins. These mice were subsequently boosted i.p. or i.m. with the same viruses. Sera collected from mice that were intranasally infected and i.p. boosted with COBRA-based viruses had broad anti-HA IgG binding, hemagglutination inhibition, and neutralizing activity against a panel of seasonal and pandemic H1N1 viruses. Mice immunized with viruses expressing a seasonal or pandemic H1N1 HA protein had antisera that recognized fewer viruses in the panel. Overall, COBRA-based HA proteins displayed on the surface of a virus elicited a breadth of Abs that recognized and neutralized historical H1N1 strains as well as more contemporary H1N1 viruses. ImmunoHorizons, 2018, 2: 226-237.
Virology journal, Jan 19, 2018
Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemi... more Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5-30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current v...
Journal of Immunology Research, 2017
Antiviral Research, 2017
The version presented here may differ from the published version or from the version of record. I... more The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.
Scientific Reports, 2017
The design of vaccine strategies and the development of drugs targeting the early stages of Hepat... more The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
The new microbiologica, 2009
The pandemic caused by the new H1N1 swine-origin influenza virus (S-OIV) strain is a worldwide he... more The pandemic caused by the new H1N1 swine-origin influenza virus (S-OIV) strain is a worldwide health emergency and alternative therapeutic and prophylactic options are greatly needed. Two human monoclonal antibody Fab fragments (HMab) neutralizing the novel H1N1 influenza strain at very low concentrations were cloned from a patient who had a broad-range anti-H1N1 serum neutralizing activity. The two HMabs neutralized S-OIV with an IC50 of 2.8 and 4 microg/mL. The genes coding for the neutralizing HMabs could be used for generating full human monoclonal IgGs that can be safely administered with the potentially of representing a novel drug to be used in the prophylaxis and the treatment of this human infection. This is the first report of molecular cloning of human monoclonal antibodies against the new pandemic swine-origin influenza virus.
Vaccines
In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we as... more In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vaccination. Participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to higher antibody levels, which were maintained at higher levels than in previously infected, unvaccinated participants. Older participants exhibited lower level of antibodies after vaccination, but a higher level after infection than younger people. The rate of antibody waning was not affected by pre-immunity or age. Participants who received a third dose of an mRNA vaccine not only increased their antibody levels ~14-fold, but also had ~3 times more antibodies compared to when they received their primary vaccine series. PBMC-derived memory B cell...
Vaccines
Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a glo... more Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or ...
Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong ... more Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong and, since its discovery, it was reported in domestic cats worldwide. Although a potential association between FeMV infection and tubulointerstitial nephritis (TIN) has been suggested, this has not been proven, and the subject remains controversial. TIN is the most frequent histopathological finding in the context of feline chronic kidney disease (CKD), which is one of the major clinical pathologies in feline medicine. FeMV research has mainly focused on defining the epidemiology, the role of FeMV in the development of CKD, and its in vitro tropism, but the pathogenicity of FeMV is still not clear, partly due to its distinctive biological characteristics, as well as to a lack of a cell culture system for its rapid isolation. In this review, we summarize the current knowledge of FeMV infection, including genetic diversity of FeMV strains, epidemiology, pathogenicity, and clinicopathologic...
Journal of Virology, 2021
Next-generation influenza virus hemagglutinin (HA)-based Computationally-Optimized Broadly Reacti... more Next-generation influenza virus hemagglutinin (HA)-based Computationally-Optimized Broadly Reactive Antigens (COBRAs) are capable of eliciting a broader neutralizing antibody response compared to current standard of care influenza virus vaccines (1-3).….
Theranostics, 2021
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to u... more Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
Theranostics, 2021
Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to u... more Rationale: Chemoresistance is a major obstacle in prostate cancer (PCa) treatment. We sought to understand the underlying mechanism of PCa chemoresistance and discover new treatments to overcome docetaxel resistance. Methods: We developed a novel phenotypic screening platform for the discovery of specific inhibitors of chemoresistant PCa cells. The mechanism of action of the lead compound was investigated using computational, molecular and cellular approaches. The in vivo toxicity and efficacy of the lead compound were evaluated in clinically-relevant animal models. Results: We identified LG1980 as a lead compound that demonstrates high selectivity and potency against chemoresistant PCa cells. Mechanistically, LG1980 binds embryonic ectoderm development (EED), disrupts the interaction between EED and enhancer of zeste homolog 2 (EZH2), thereby inducing the protein degradation of EZH2 and inhibiting the phosphorylation and activity of EZH2. Consequently, LG1980 targets a survival signaling cascade consisting of signal transducer and activator of transcription 3 (Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding cassette B 1 (ABCB1) and survivin. As a lead compound, LG1980 is well tolerated in mice and effectively suppresses the in vivo growth of chemoresistant PCa and synergistically enhances the efficacy of docetaxel in xenograft models. Conclusions: These results indicate that pharmacological inhibition of EED-EZH2 interaction is a novel strategy for the treatment of chemoresistant PCa. LG1980 and its analogues have the potential to be integrated into standard of care to improve clinical outcomes in PCa patients.
PLOS ONE, 2021
Recent advances in high-throughput single cell sequencing have opened up new avenues into the inv... more Recent advances in high-throughput single cell sequencing have opened up new avenues into the investigation of B cell receptor (BCR) repertoires. In this study, PBMCs were collected from 17 human participants vaccinated with the split-inactivated influenza virus vaccine during the 2016–2017 influenza season. A combination of Immune Repertoire Capture (IRCTM) technology and IgG sequencing was performed on ~7,800 plasmablast (PB) cells and preferential IgG heavy-light chain pairings were investigated. In some participants, a single expanded clonotype accounted for ~22% of their PB BCR repertoire. Approximately 60% (10/17) of participants experienced convergent evolution, possessing public PBs that were elicited independently in multiple participants. Binding profiles of one private and three public PBs confirmed they were all subtype-specific, cross-reactive hemagglutinin (HA) head-directed antibodies. Collectively, this high-resolution antibody repertoire analysis demonstrated the im...
Cell, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Betacoronavirus SARS-CoV-2 is posing a major threat to human health and its diffusion around the ... more Betacoronavirus SARS-CoV-2 is posing a major threat to human health and its diffusion around the world is having dire socioeconomical consequences. Thanks to the scientific community’s unprecedented efforts, the atomic structure of several viral proteins has been promptly resolved. As the crucial mediator of host cell infection, the heavily glycosylated trimeric viral Spike protein (S) has been attracting the most attention and is at the center of efforts to develop antivirals, vaccines, and diagnostic solutions.Herein, we use an energy-decomposition approach to identify antigenic domains and antibody binding sites on the fully glycosylated S protein. Crucially, all that is required by our method are unbiased atomistic molecular dynamics simulations; no prior knowledge of binding properties or ad hoc combinations of parameters/measures extracted from simulations is needed. Our method simply exploits the analysis of energy interactions between all intra-protomer aminoacid and monosac...
Frontiers in Immunology, 2020
Influenza is a highly contagious viral respiratory disease that affects millions of people worldw... more Influenza is a highly contagious viral respiratory disease that affects millions of people worldwide each year. Annual vaccination is recommended by the World Health Organization to reduce influenza severity and limit transmission through elicitation of antibodies targeting mainly the hemagglutinin glycoprotein of the influenza virus. Antibodies elicited by current seasonal influenza vaccines are predominantly strain-specific. However, continuous antigenic drift by circulating influenza viruses facilitates escape from pre-existing antibodies requiring frequent reformulation of the seasonal influenza vaccine. Traditionally, immunological responses to influenza vaccination have been largely focused on IgG antibodies, with almost complete disregard of other isotypes. In this report, young adults (18-34 years old) and elderly (65-85 years old) subjects were administered the split inactivated influenza vaccine for 3 consecutive seasons and their serological IgA and IgG responses were profiled. Moreover, correlation analysis showed a positive relationship between vaccine-induced IgA antibody titers and traditional immunological endpoints, exposing vaccine-induced IgA antibodies as an important novel immune correlate during influenza vaccination.
Journal of Virology, 2020
Computationally Optimized Broadly Reactive Antigens (COBRA) designed for different influenza viru... more Computationally Optimized Broadly Reactive Antigens (COBRA) designed for different influenza virus subtypes (H1N1, H3N2 and H5N1) elicit a subtype-specific broad antibody (Ab) response in naïve as well as in pre-immune influenza virus animal models (1-9).…
Journal of Immunology Research, 2019
Journal of Immunology Research, 2019
Vaccines are recognized worldwide as one of the most important tools for combating infectious dis... more Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, th...
ImmunoHorizons, 2018
Influenza viruses represent a threat to the world population. The currently available standard of... more Influenza viruses represent a threat to the world population. The currently available standard of care influenza vaccines are offered for each influenza season to prevent infection and spread of influenza viruses. Current vaccine formulations rely on using wild-type Ags, including the hemagglutinin (HA) and neuraminidase (NA) proteins as the primary immune targets of the vaccine. However, vaccine effectiveness varies from season to season, ranging from 10 to 75% depending on season and on age group studied. To improve rates of vaccine effectiveness, a new generation of computationally optimized broadly reactive Ags (COBRA)-based vaccines have been developed as a next-generation influenza vaccine. In this report, mice were intranasally, i.p., or i.m. primed with reassortant influenza viruses expressing different H1N1 COBRA HA proteins. These mice were subsequently boosted i.p. or i.m. with the same viruses. Sera collected from mice that were intranasally infected and i.p. boosted with COBRA-based viruses had broad anti-HA IgG binding, hemagglutination inhibition, and neutralizing activity against a panel of seasonal and pandemic H1N1 viruses. Mice immunized with viruses expressing a seasonal or pandemic H1N1 HA protein had antisera that recognized fewer viruses in the panel. Overall, COBRA-based HA proteins displayed on the surface of a virus elicited a breadth of Abs that recognized and neutralized historical H1N1 strains as well as more contemporary H1N1 viruses. ImmunoHorizons, 2018, 2: 226-237.
Virology journal, Jan 19, 2018
Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemi... more Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5-30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current v...
Journal of Immunology Research, 2017
Antiviral Research, 2017
The version presented here may differ from the published version or from the version of record. I... more The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.
Scientific Reports, 2017
The design of vaccine strategies and the development of drugs targeting the early stages of Hepat... more The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
The new microbiologica, 2009
The pandemic caused by the new H1N1 swine-origin influenza virus (S-OIV) strain is a worldwide he... more The pandemic caused by the new H1N1 swine-origin influenza virus (S-OIV) strain is a worldwide health emergency and alternative therapeutic and prophylactic options are greatly needed. Two human monoclonal antibody Fab fragments (HMab) neutralizing the novel H1N1 influenza strain at very low concentrations were cloned from a patient who had a broad-range anti-H1N1 serum neutralizing activity. The two HMabs neutralized S-OIV with an IC50 of 2.8 and 4 microg/mL. The genes coding for the neutralizing HMabs could be used for generating full human monoclonal IgGs that can be safely administered with the potentially of representing a novel drug to be used in the prophylaxis and the treatment of this human infection. This is the first report of molecular cloning of human monoclonal antibodies against the new pandemic swine-origin influenza virus.
The role of the immune response as marker as well as therapeutic tool for the diagnosis and treat... more The role of the immune response as marker as well as therapeutic tool for the diagnosis and treatment of infectious diseases, is well ascertained and described; however, these concepts are continually evolving.
In the diagnostic field, the research of a specific humoral immune response has been used from a long time. In fact, the seropositivity is considered as an important key for the determination of an occurring infection. Recently, in addition to the classical investigation on the presence or absence of antibodies directed against specific antigens, the titer of specific antibodies, defined as index, is gaining importance as a prognostic marker for certain infectious diseases, for example, the introduction of the JCPyV-seropositivity, defined as the presence of specific anti-JCPyV antibodies, in the stratification of multiple sclerosis patients for the risk to develop progressive multifocal leukoencephalopathy.
The immune response is the key element to resolve an infection. For this reason, a therapeutic and a prophylactic strategy for infectious diseases is usually based on immune-based approaches. In particular, prophylactic strategies are principally focused on the stimulation of a specific immune response against the pathogen, that is, the active immunization. On the other hand, immunotherapeutic strategies are based on the concept of a passive immunization. In this case, immunoglobulins obtained from sera of immune individuals or by the cloning of recombinant antibodies (usually, antigen-specific monoclonal antibodies) are injected to protect a susceptible or infected host. In this regard, very recently, a cocktail of monoclonal antibodies is being considered as a possible treatment of Ebola virus infections.
Recently, in the context of a passive immunization, also the infusions of antigen-specific or engineered T cells, as an alternative treatment for infectious diseases, are being considered. As an example, chimeric antigen receptor- (CAR-) engineered T cells are increasingly gaining potential application also for the elimination of difficult-to-eradicate pathogens. In this regard, in the last few years, several CARs directed against different infectious agents, such as HIV, CMV, HBV, HCV, and A. fumigatus, have been described.
The purpose of this special issue is to publish high quality research paper and review articles that underline the use of immune-based approaches for the diagnosis and therapy of infectious diseases. Original, high quality contributions that are not yet published or that are not under review by other journals or peer-reviewed conferences are evaluated.
Potential topics include, but are not limited to:
- Immune-based diagnostic tools for infectious diseases
- New immune-based approaches as prognostic markers for infectious diseases
- Immunotherapeutic approaches against infectious diseases
- Anti-infective monoclonal antibodies and their engineering
- New prophylactic approaches against infectious diseases
- Adoptive T cell therapy for infectious diseases
- Engineered and redirected T cells for the treatment of infectious diseases
Viruses, 2012
The immune response against some viral pathogens, in particular those causing chronic infections,... more The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs) have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this "novel" evasion strategy.